Cargando…

Two novel, putative mechanisms of action for citalopram-induced platelet inhibition

Citalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram’s ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechan...

Descripción completa

Detalles Bibliográficos
Autores principales: Roweth, Harvey G., Cook, Aaron A., Moroi, Masaaki, Bonna, Arkadiusz M., Jung, Stephanie M., Bergmeier, Wolfgang, Sage, Stewart O., Jarvis, Gavin E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232110/
https://www.ncbi.nlm.nih.gov/pubmed/30420683
http://dx.doi.org/10.1038/s41598-018-34389-5
Descripción
Sumario:Citalopram, a selective serotonin reuptake inhibitor (SSRI), inhibits platelet function in vitro. We have previously shown that this action is independent of citalopram’s ability to block serotonin uptake by the serotonin transporter and must therefore be mediated via distinct pharmacological mechanisms. We now report evidence for two novel and putative mechanisms of citalopram-induced platelet inhibition. Firstly, in platelets, citalopram blocked U46619-induced Rap1 activation and subsequent platelet aggregation, but failed to inhibit U46619-induced increases in cytosolic Ca(2+). Similarly, in neutrophils, citalopram inhibited Rap1 activation and downstream functions but failed to block PAF-induced Ca(2+) mobilisation. In a cell-free system, citalopram also reduced CalDAG-GEFI-mediated nucleotide exchange on Rap1B. Secondly, the binding of anti-GPVI antibodies to resting platelets was inhibited by citalopram. Furthermore, citalopram-induced inhibition of GPVI-mediated platelet aggregation was instantaneous, reversible and displayed competitive characteristics, suggesting that these effects were not caused by a reduction in GPVI surface expression, but by simple competitive binding. In conclusion, we propose two novel, putative and distinct inhibitory mechanisms of action for citalopram: (1) inhibition of CalDAG-GEFI/Rap1 signalling, and (2) competitive antagonism of GPVI in platelets. These findings may aid in the development of novel inhibitors of CalDAG-GEFI/Rap1-dependent nucleotide exchange and novel GPVI antagonists.