Cargando…
Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
The ability of deep learning architectures to identify glaucomatous optic neuropathy (GON) in fundus photographs was evaluated. A large database of fundus photographs (n = 14,822) from a racially and ethnically diverse group of individuals (over 33% of African descent) was evaluated by expert review...
Autores principales: | Christopher, Mark, Belghith, Akram, Bowd, Christopher, Proudfoot, James A., Goldbaum, Michael H., Weinreb, Robert N., Girkin, Christopher A., Liebmann, Jeffrey M., Zangwill, Linda M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232132/ https://www.ncbi.nlm.nih.gov/pubmed/30420630 http://dx.doi.org/10.1038/s41598-018-35044-9 |
Ejemplares similares
-
Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization
por: Fan, Rui, et al.
Publicado: (2022) -
Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers
por: Bowd, Christopher, et al.
Publicado: (2014) -
Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest
por: Bowd, Christopher, et al.
Publicado: (2021) -
Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields
por: Yousefi, Siamak, et al.
Publicado: (2016) -
Structural Change Can Be Detected in Advanced-Glaucoma Eyes
por: Belghith, Akram, et al.
Publicado: (2016)