Cargando…
Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors
Chromothripsis and chromoanasynthesis are catastrophic events leading to clustered genomic rearrangements. Whole-genome sequencing revealed frequent complex genomic rearrangements (n = 16/26) in brain tumors developing in mice deficient for factors involved in homologous-recombination-repair or non-...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232171/ https://www.ncbi.nlm.nih.gov/pubmed/30420702 http://dx.doi.org/10.1038/s41467-018-06925-4 |
Sumario: | Chromothripsis and chromoanasynthesis are catastrophic events leading to clustered genomic rearrangements. Whole-genome sequencing revealed frequent complex genomic rearrangements (n = 16/26) in brain tumors developing in mice deficient for factors involved in homologous-recombination-repair or non-homologous-end-joining. Catastrophic events were tightly linked to Myc/Mycn amplification, with increased DNA damage and inefficient apoptotic response already observable at early postnatal stages. Inhibition of repair processes and comparison of the mouse tumors with human medulloblastomas (n = 68) and glioblastomas (n = 32) identified chromothripsis as associated with MYC/MYCN gains and with DNA repair deficiencies, pointing towards therapeutic opportunities to target DNA repair defects in tumors with complex genomic rearrangements. |
---|