Cargando…
Energy current and computing
In his seminal Electrical papers, Oliver Heaviside stated ‘We reverse this …' referring to the relationship between energy current and state changes in electrical networks. We explore implications of Heaviside's view upon the state changes in electronic circuits, effectively constituting c...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232576/ https://www.ncbi.nlm.nih.gov/pubmed/30373939 http://dx.doi.org/10.1098/rsta.2017.0449 |
_version_ | 1783370418918260736 |
---|---|
author | Yakovlev, Alex |
author_facet | Yakovlev, Alex |
author_sort | Yakovlev, Alex |
collection | PubMed |
description | In his seminal Electrical papers, Oliver Heaviside stated ‘We reverse this …' referring to the relationship between energy current and state changes in electrical networks. We explore implications of Heaviside's view upon the state changes in electronic circuits, effectively constituting computational processes. Our vision about energy-modulated computing that can be applicable for electronic systems with energy harvesting is introduced. Examples of analysis of computational circuits as loads on power sources are presented. We also draw inspiration from Heaviside's way of using and advancing mathematical methods from the needs of natural physical phenomena. A vivid example of Heavisidian approach to the use of mathematics is in employing series where they emerge out of the spatio-temporal view upon energy flows. Using series expressions, and types of natural discretization in space and time, we explain the processes of discharging a capacitive transmission line, first, through a constant resistor and, second, through a voltage controlled digital circuit. We show that event-based models, such as Petri nets with an explicit notion of causality inherent in them, can be instrumental in creating bridges between electromagnetics and computing. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’. |
format | Online Article Text |
id | pubmed-6232576 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-62325762018-11-16 Energy current and computing Yakovlev, Alex Philos Trans A Math Phys Eng Sci Articles In his seminal Electrical papers, Oliver Heaviside stated ‘We reverse this …' referring to the relationship between energy current and state changes in electrical networks. We explore implications of Heaviside's view upon the state changes in electronic circuits, effectively constituting computational processes. Our vision about energy-modulated computing that can be applicable for electronic systems with energy harvesting is introduced. Examples of analysis of computational circuits as loads on power sources are presented. We also draw inspiration from Heaviside's way of using and advancing mathematical methods from the needs of natural physical phenomena. A vivid example of Heavisidian approach to the use of mathematics is in employing series where they emerge out of the spatio-temporal view upon energy flows. Using series expressions, and types of natural discretization in space and time, we explain the processes of discharging a capacitive transmission line, first, through a constant resistor and, second, through a voltage controlled digital circuit. We show that event-based models, such as Petri nets with an explicit notion of causality inherent in them, can be instrumental in creating bridges between electromagnetics and computing. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’. The Royal Society Publishing 2018-12-13 2018-10-29 /pmc/articles/PMC6232576/ /pubmed/30373939 http://dx.doi.org/10.1098/rsta.2017.0449 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Yakovlev, Alex Energy current and computing |
title | Energy current and computing |
title_full | Energy current and computing |
title_fullStr | Energy current and computing |
title_full_unstemmed | Energy current and computing |
title_short | Energy current and computing |
title_sort | energy current and computing |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232576/ https://www.ncbi.nlm.nih.gov/pubmed/30373939 http://dx.doi.org/10.1098/rsta.2017.0449 |
work_keys_str_mv | AT yakovlevalex energycurrentandcomputing |