Cargando…
A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent
Laboratory demonstrations of brain-computer interface (BCI) systems show promise for reducing disability associated with paralysis by directly linking neural activity to the control of assistive devices. Surveys of potential users have revealed several key BCI performance criteria for clinical trans...
Autores principales: | Skomrock, Nicholas D., Schwemmer, Michael A., Ting, Jordyn E., Trivedi, Hemang R., Sharma, Gaurav, Bockbrader, Marcia A., Friedenberg, David A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232881/ https://www.ncbi.nlm.nih.gov/pubmed/30459542 http://dx.doi.org/10.3389/fnins.2018.00763 |
Ejemplares similares
-
Dexterous Control of Seven Functional Hand Movements Using Cortically-Controlled Transcutaneous Muscle Stimulation in a Person With Tetraplegia
por: Colachis, Samuel C., et al.
Publicado: (2018) -
Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review
por: Dunlap, Collin F., et al.
Publicado: (2020) -
Decoding intentions from movement kinematics
por: Cavallo, Andrea, et al.
Publicado: (2016) -
Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications
por: Zhang, Mingming, et al.
Publicado: (2018) -
Human primary motor cortex indexes the onset of subjective intention in brain-machine-interface mediated actions
por: Noel, Jean-Paul, et al.
Publicado: (2023)