Cargando…

EEG, behavioural and physiological recordings following a painful procedure in human neonates

We present a dataset of cortical, behavioural, and physiological responses following a single, clinically required noxious stimulus in a neonatal sample. Cortical activity was recorded from 112 neonates (29–47 weeks gestational age at study) using a 20-channel electroencephalogram (EEG), which was t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Laura, Laudiano-Dray, Maria Pureza, Whitehead, Kimberley, Verriotis, Madeleine, Meek, Judith, Fitzgerald, Maria, Fabrizi, Lorenzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233256/
https://www.ncbi.nlm.nih.gov/pubmed/30422128
http://dx.doi.org/10.1038/sdata.2018.248
Descripción
Sumario:We present a dataset of cortical, behavioural, and physiological responses following a single, clinically required noxious stimulus in a neonatal sample. Cortical activity was recorded from 112 neonates (29–47 weeks gestational age at study) using a 20-channel electroencephalogram (EEG), which was time-locked to a heel lance. This data is linked to pain-related behaviour (facial expression), physiology (heart rate, oxygenation) and a composite clinical score (Premature Infant Pain Profile, PIPP). The dataset includes responses to non-noxious sham and auditory controls. The infants’ relevant medical and pain history was collected up to the day of the study and recorded in an extensive database of variables including clinical condition at birth, diagnoses, medications, previous painful procedures, injuries, and selected maternal information. This dataset can be used to investigate the cortical, physiological, and behavioural pain-related processing in human infants and to evaluate the impact of medical conditions and experiences upon the infant response to noxious stimuli. Furthermore, it provides information on the formation of individual pain phenotypes.