Cargando…

The crowns have eyes: multiple opsins found in the eyes of the crown-of-thorns starfish Acanthaster planci

BACKGROUND: Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowl...

Descripción completa

Detalles Bibliográficos
Autores principales: Lowe, Elijah K., Garm, Anders L., Ullrich-Lüter, Esther, Cuomo, Claudia, Arnone, Maria I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233551/
https://www.ncbi.nlm.nih.gov/pubmed/30419810
http://dx.doi.org/10.1186/s12862-018-1276-0
Descripción
Sumario:BACKGROUND: Opsins are G protein-coupled receptors used for both visual and non-visual photoreception, and these proteins evolutionarily date back to the base of the bilaterians. In the current sequencing age, phylogenomic analysis has proven to be a powerful tool, facilitating the increase in knowledge about diversity within the opsin subclasses and, so far, at least nine types of opsins have been identified. Within echinoderms, opsins have been studied in Echinoidea and Ophiuroidea, which do not possess proper image forming eyes, but rather widely dispersed dermal photoreceptors. However, most species of Asteroidea, the starfish, possess true eyes and studying them will shed light on the diversity of opsin usage within echinoderms and help resolve the evolutionary history of opsins. RESULTS: Using high-throughput RNA sequencing, we have sequenced and analyzed the transcriptomes of different Acanthaster planci tissue samples: eyes, radial nerve, tube feet and a mixture of tissues from other organs. At least ten opsins were identified, and eight of them were found significantly differentially expressed in both eyes and radial nerve, with R-opsin being the most highly expressed in the eye. CONCLUSION: This study provides new important insight into the involvement of opsins in visual and nonvisual photoreception. Of relevance, we found the first indication of an r-opsin photopigment expressed in a well-developed visual eye in a deuterostome animal. Additionally, we provided tissue specific A. planci transcriptomes that will aid in future Evo Devo studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12862-018-1276-0) contains supplementary material, which is available to authorized users.