Cargando…
What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders
Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234265/ https://www.ncbi.nlm.nih.gov/pubmed/30450391 http://dx.doi.org/10.1016/j.ynstr.2018.05.004 |
_version_ | 1783370666947379200 |
---|---|
author | McReynolds, Jayme R. Christianson, John P. Blacktop, Jordan M. Mantsch, John R. |
author_facet | McReynolds, Jayme R. Christianson, John P. Blacktop, Jordan M. Mantsch, John R. |
author_sort | McReynolds, Jayme R. |
collection | PubMed |
description | Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as stress is uncontrollable and pervasive in the lives of those struggling with addiction. Thus, understanding the neurocircuitry that underlies the influence of stress on drug seeking is critical for guiding treatment. Preclinical research aimed at defining this neurocircuitry has, in part, relied upon the use of experimental approaches that allow visualization of cellular and circuit activity that corresponds to stressor-induced drug seeking in rodent relapse models. Much of what we have learned about the mechanisms that mediate stressor-induced relapse has been informed by studies that have used the expression of the immediate early gene, cfos, or its protein product, Fos, as post-mortem activity markers. In this review we provide an overview of the rodent models used to study stressor-induced relapse and briefly summarize what is known about the underlying neurocircuitry before describing the use of cfos/Fos-based approaches. In addition to reviewing findings obtained using this approach, its advantages and limitations are considered. Moreover, new techniques that leverage the expression profile of cfos to tag and manipulate cells based on their activity patterns are discussed. The intent of the review is to guide the interpretation of old and design of new studies that utilize cfos/Fos-based strategies to study the neurocircuitry that contributes to stress-related drug use. |
format | Online Article Text |
id | pubmed-6234265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-62342652018-11-16 What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders McReynolds, Jayme R. Christianson, John P. Blacktop, Jordan M. Mantsch, John R. Neurobiol Stress Articles from the Special Issue on Imaging Stress; Edited by Michael R Bruchas and Alan Simmons Despite extensive research efforts, drug addiction persists as a largely unmet medical need. Perhaps the biggest challenge for treating addiction is the high rate of recidivism. While many factors can promote relapse in abstinent drug users, the contribution of stress is particularly problematic, as stress is uncontrollable and pervasive in the lives of those struggling with addiction. Thus, understanding the neurocircuitry that underlies the influence of stress on drug seeking is critical for guiding treatment. Preclinical research aimed at defining this neurocircuitry has, in part, relied upon the use of experimental approaches that allow visualization of cellular and circuit activity that corresponds to stressor-induced drug seeking in rodent relapse models. Much of what we have learned about the mechanisms that mediate stressor-induced relapse has been informed by studies that have used the expression of the immediate early gene, cfos, or its protein product, Fos, as post-mortem activity markers. In this review we provide an overview of the rodent models used to study stressor-induced relapse and briefly summarize what is known about the underlying neurocircuitry before describing the use of cfos/Fos-based approaches. In addition to reviewing findings obtained using this approach, its advantages and limitations are considered. Moreover, new techniques that leverage the expression profile of cfos to tag and manipulate cells based on their activity patterns are discussed. The intent of the review is to guide the interpretation of old and design of new studies that utilize cfos/Fos-based strategies to study the neurocircuitry that contributes to stress-related drug use. Elsevier 2018-06-02 /pmc/articles/PMC6234265/ /pubmed/30450391 http://dx.doi.org/10.1016/j.ynstr.2018.05.004 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Articles from the Special Issue on Imaging Stress; Edited by Michael R Bruchas and Alan Simmons McReynolds, Jayme R. Christianson, John P. Blacktop, Jordan M. Mantsch, John R. What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title | What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title_full | What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title_fullStr | What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title_full_unstemmed | What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title_short | What does the Fos say? Using Fos-based approaches to understand the contribution of stress to substance use disorders |
title_sort | what does the fos say? using fos-based approaches to understand the contribution of stress to substance use disorders |
topic | Articles from the Special Issue on Imaging Stress; Edited by Michael R Bruchas and Alan Simmons |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234265/ https://www.ncbi.nlm.nih.gov/pubmed/30450391 http://dx.doi.org/10.1016/j.ynstr.2018.05.004 |
work_keys_str_mv | AT mcreynoldsjaymer whatdoesthefossayusingfosbasedapproachestounderstandthecontributionofstresstosubstanceusedisorders AT christiansonjohnp whatdoesthefossayusingfosbasedapproachestounderstandthecontributionofstresstosubstanceusedisorders AT blacktopjordanm whatdoesthefossayusingfosbasedapproachestounderstandthecontributionofstresstosubstanceusedisorders AT mantschjohnr whatdoesthefossayusingfosbasedapproachestounderstandthecontributionofstresstosubstanceusedisorders |