Cargando…

Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks

This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solven...

Descripción completa

Detalles Bibliográficos
Autores principales: Eze, Precious Chukwuweike, Masuku, Cornelius Mduduzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234271/
https://www.ncbi.nlm.nih.gov/pubmed/30456268
http://dx.doi.org/10.1016/j.dib.2018.10.129
Descripción
Sumario:This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots.