Cargando…

Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks

This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solven...

Descripción completa

Detalles Bibliográficos
Autores principales: Eze, Precious Chukwuweike, Masuku, Cornelius Mduduzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234271/
https://www.ncbi.nlm.nih.gov/pubmed/30456268
http://dx.doi.org/10.1016/j.dib.2018.10.129
_version_ 1783370668599934976
author Eze, Precious Chukwuweike
Masuku, Cornelius Mduduzi
author_facet Eze, Precious Chukwuweike
Masuku, Cornelius Mduduzi
author_sort Eze, Precious Chukwuweike
collection PubMed
description This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots.
format Online
Article
Text
id pubmed-6234271
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-62342712018-11-19 Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks Eze, Precious Chukwuweike Masuku, Cornelius Mduduzi Data Brief Chemical Engineering This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Elsevier 2018-10-29 /pmc/articles/PMC6234271/ /pubmed/30456268 http://dx.doi.org/10.1016/j.dib.2018.10.129 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Chemical Engineering
Eze, Precious Chukwuweike
Masuku, Cornelius Mduduzi
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_full Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_fullStr Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_full_unstemmed Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_short Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
title_sort supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
topic Chemical Engineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234271/
https://www.ncbi.nlm.nih.gov/pubmed/30456268
http://dx.doi.org/10.1016/j.dib.2018.10.129
work_keys_str_mv AT ezepreciouschukwuweike supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks
AT masukucorneliusmduduzi supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks