Cargando…
Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks
This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solven...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234271/ https://www.ncbi.nlm.nih.gov/pubmed/30456268 http://dx.doi.org/10.1016/j.dib.2018.10.129 |
_version_ | 1783370668599934976 |
---|---|
author | Eze, Precious Chukwuweike Masuku, Cornelius Mduduzi |
author_facet | Eze, Precious Chukwuweike Masuku, Cornelius Mduduzi |
author_sort | Eze, Precious Chukwuweike |
collection | PubMed |
description | This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. |
format | Online Article Text |
id | pubmed-6234271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-62342712018-11-19 Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks Eze, Precious Chukwuweike Masuku, Cornelius Mduduzi Data Brief Chemical Engineering This article contains data on vapor–liquid equilibrium modeling of 1533 gas-liquid solubilities divided over sixty binary systems viz. carbon monoxide, carbon dioxide, hydrogen, water, ethane, propane, pentane, hexane, methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol in the solvents phenanthrene, 1-hexadecanol, octacosane, hexadecane and tetraethylene glycol at pressures up to 5.5 MPa and temperatures from 293 to 553 K using literature data. The solvents are considered to be potentially significant in the conversion of synthesis gas through gas-slurry processes. Artificial neural networks limited to one hidden layer and up to five neurons in the hidden layer were used to predict the binary plots. Elsevier 2018-10-29 /pmc/articles/PMC6234271/ /pubmed/30456268 http://dx.doi.org/10.1016/j.dib.2018.10.129 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Chemical Engineering Eze, Precious Chukwuweike Masuku, Cornelius Mduduzi Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title | Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_full | Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_fullStr | Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_full_unstemmed | Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_short | Supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
title_sort | supporting plots and tables on vapour–liquid equilibrium prediction for synthesis gas conversion using artificial neural networks |
topic | Chemical Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234271/ https://www.ncbi.nlm.nih.gov/pubmed/30456268 http://dx.doi.org/10.1016/j.dib.2018.10.129 |
work_keys_str_mv | AT ezepreciouschukwuweike supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks AT masukucorneliusmduduzi supportingplotsandtablesonvapourliquidequilibriumpredictionforsynthesisgasconversionusingartificialneuralnetworks |