Cargando…

Evaluating the Information Content of Shallow Shotgun Metagenomics

Although microbial communities are associated with human, environmental, plant, and animal health, there exists no cost-effective method for precisely characterizing species and genes in such communities. While deep whole-metagenome shotgun (WMS) sequencing provides high taxonomic and functional res...

Descripción completa

Detalles Bibliográficos
Autores principales: Hillmann, Benjamin, Al-Ghalith, Gabriel A., Shields-Cutler, Robin R., Zhu, Qiyun, Gohl, Daryl M., Beckman, Kenneth B., Knight, Rob, Knights, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234283/
https://www.ncbi.nlm.nih.gov/pubmed/30443602
http://dx.doi.org/10.1128/mSystems.00069-18
_version_ 1783370671777120256
author Hillmann, Benjamin
Al-Ghalith, Gabriel A.
Shields-Cutler, Robin R.
Zhu, Qiyun
Gohl, Daryl M.
Beckman, Kenneth B.
Knight, Rob
Knights, Dan
author_facet Hillmann, Benjamin
Al-Ghalith, Gabriel A.
Shields-Cutler, Robin R.
Zhu, Qiyun
Gohl, Daryl M.
Beckman, Kenneth B.
Knight, Rob
Knights, Dan
author_sort Hillmann, Benjamin
collection PubMed
description Although microbial communities are associated with human, environmental, plant, and animal health, there exists no cost-effective method for precisely characterizing species and genes in such communities. While deep whole-metagenome shotgun (WMS) sequencing provides high taxonomic and functional resolution, it is often prohibitively expensive for large-scale studies. The prevailing alternative, 16S rRNA gene amplicon (16S) sequencing, often does not resolve taxonomy past the genus level and provides only moderately accurate predictions of the functional profile; thus, there is currently no widely accepted approach to affordable, high-resolution, taxonomic, and functional microbiome analysis. To address this technology gap, we evaluated the information content of shallow shotgun sequencing with as low as 0.5 million sequences per sample as an alternative to 16S sequencing for large human microbiome studies. We describe a library preparation protocol enabling shallow shotgun sequencing at approximately the same per-sample cost as 16S sequencing. We analyzed multiple real and simulated biological data sets, including two novel human stool samples with ultradeep sequencing of 2.5 billion sequences per sample, and found that shallow shotgun sequencing recovers more-accurate species-level taxonomic and functional profiles of the human microbiome than 16S sequencing. We discuss the inherent limitations of shallow shotgun sequencing and note that 16S sequencing remains a valuable and important method for taxonomic profiling of novel environments. Although deep WMS sequencing remains the gold standard for high-resolution microbiome analysis, we recommend that researchers consider shallow shotgun sequencing as a useful alternative to 16S sequencing for large-scale human microbiome research studies where WMS sequencing may be cost-prohibitive. IMPORTANCE A common refrain in recent microbiome-related academic meetings is that the field needs to move away from broad taxonomic surveys using 16S sequencing and toward more powerful longitudinal studies using shotgun sequencing. However, performing deep shotgun sequencing in large longitudinal studies remains prohibitively expensive for all but the most well-funded research labs and consortia, which leads many researchers to choose 16S sequencing for large studies, followed by deep shotgun sequencing on a subset of targeted samples. Here, we show that shallow- or moderate-depth shotgun sequencing may be used by researchers to obtain species-level taxonomic and functional data at approximately the same cost as amplicon sequencing. While shallow shotgun sequencing is not intended to replace deep shotgun sequencing for strain-level characterization, we recommend that microbiome scientists consider using shallow shotgun sequencing instead of 16S sequencing for large-scale human microbiome studies.
format Online
Article
Text
id pubmed-6234283
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-62342832018-11-15 Evaluating the Information Content of Shallow Shotgun Metagenomics Hillmann, Benjamin Al-Ghalith, Gabriel A. Shields-Cutler, Robin R. Zhu, Qiyun Gohl, Daryl M. Beckman, Kenneth B. Knight, Rob Knights, Dan mSystems Methods and Protocols Although microbial communities are associated with human, environmental, plant, and animal health, there exists no cost-effective method for precisely characterizing species and genes in such communities. While deep whole-metagenome shotgun (WMS) sequencing provides high taxonomic and functional resolution, it is often prohibitively expensive for large-scale studies. The prevailing alternative, 16S rRNA gene amplicon (16S) sequencing, often does not resolve taxonomy past the genus level and provides only moderately accurate predictions of the functional profile; thus, there is currently no widely accepted approach to affordable, high-resolution, taxonomic, and functional microbiome analysis. To address this technology gap, we evaluated the information content of shallow shotgun sequencing with as low as 0.5 million sequences per sample as an alternative to 16S sequencing for large human microbiome studies. We describe a library preparation protocol enabling shallow shotgun sequencing at approximately the same per-sample cost as 16S sequencing. We analyzed multiple real and simulated biological data sets, including two novel human stool samples with ultradeep sequencing of 2.5 billion sequences per sample, and found that shallow shotgun sequencing recovers more-accurate species-level taxonomic and functional profiles of the human microbiome than 16S sequencing. We discuss the inherent limitations of shallow shotgun sequencing and note that 16S sequencing remains a valuable and important method for taxonomic profiling of novel environments. Although deep WMS sequencing remains the gold standard for high-resolution microbiome analysis, we recommend that researchers consider shallow shotgun sequencing as a useful alternative to 16S sequencing for large-scale human microbiome research studies where WMS sequencing may be cost-prohibitive. IMPORTANCE A common refrain in recent microbiome-related academic meetings is that the field needs to move away from broad taxonomic surveys using 16S sequencing and toward more powerful longitudinal studies using shotgun sequencing. However, performing deep shotgun sequencing in large longitudinal studies remains prohibitively expensive for all but the most well-funded research labs and consortia, which leads many researchers to choose 16S sequencing for large studies, followed by deep shotgun sequencing on a subset of targeted samples. Here, we show that shallow- or moderate-depth shotgun sequencing may be used by researchers to obtain species-level taxonomic and functional data at approximately the same cost as amplicon sequencing. While shallow shotgun sequencing is not intended to replace deep shotgun sequencing for strain-level characterization, we recommend that microbiome scientists consider using shallow shotgun sequencing instead of 16S sequencing for large-scale human microbiome studies. American Society for Microbiology 2018-11-13 /pmc/articles/PMC6234283/ /pubmed/30443602 http://dx.doi.org/10.1128/mSystems.00069-18 Text en Copyright © 2018 Hillmann et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Methods and Protocols
Hillmann, Benjamin
Al-Ghalith, Gabriel A.
Shields-Cutler, Robin R.
Zhu, Qiyun
Gohl, Daryl M.
Beckman, Kenneth B.
Knight, Rob
Knights, Dan
Evaluating the Information Content of Shallow Shotgun Metagenomics
title Evaluating the Information Content of Shallow Shotgun Metagenomics
title_full Evaluating the Information Content of Shallow Shotgun Metagenomics
title_fullStr Evaluating the Information Content of Shallow Shotgun Metagenomics
title_full_unstemmed Evaluating the Information Content of Shallow Shotgun Metagenomics
title_short Evaluating the Information Content of Shallow Shotgun Metagenomics
title_sort evaluating the information content of shallow shotgun metagenomics
topic Methods and Protocols
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234283/
https://www.ncbi.nlm.nih.gov/pubmed/30443602
http://dx.doi.org/10.1128/mSystems.00069-18
work_keys_str_mv AT hillmannbenjamin evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT alghalithgabriela evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT shieldscutlerrobinr evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT zhuqiyun evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT gohldarylm evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT beckmankennethb evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT knightrob evaluatingtheinformationcontentofshallowshotgunmetagenomics
AT knightsdan evaluatingtheinformationcontentofshallowshotgunmetagenomics