Cargando…

Proteomic profiling data of HEK293 proteins bound to human recombinant renalases-1 and -2

Renalase (RNLS) is a recently discovered protein involved in blood pressure regulation. It exists both as an intracellular catalytically active flavoprotein (EC 1.6.3.5 dihydro-NAD(P):oxygen oxidoreductase) and an extracellular protein that demonstrates various cell protecting effects. Using a twent...

Descripción completa

Detalles Bibliográficos
Autores principales: Fedchenko, Valerii I., Kopylov, Arthur T., Buneeva, Olga A., Kaloshin, Alexei A., Zgoda, Victor G., Medvedev, Alexei E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234383/
https://www.ncbi.nlm.nih.gov/pubmed/30456273
http://dx.doi.org/10.1016/j.dib.2018.10.137
Descripción
Sumario:Renalase (RNLS) is a recently discovered protein involved in blood pressure regulation. It exists both as an intracellular catalytically active flavoprotein (EC 1.6.3.5 dihydro-NAD(P):oxygen oxidoreductase) and an extracellular protein that demonstrates various cell protecting effects. Using a twenty-membered peptide corresponding to the residues 220–239 of the renalase sequence (RP-220) and the HK-2 cell line Wang et al. identified a renalase-binding protein, which was considered as a receptor for extracellular renalase crucial for MAPK signaling (Wang et al., 2015) [1]. In this study we have investigated profiles of renalase binding proteins in HEK293 cells by using affinity based proteomic profiling with full-length recombinant human RNLS-1 and human RNLS-2 as affinity ligands followed by analysis of bound proteins by liquid chromatography-mass spectrometry. Both renalases (RNLS-1 and RNLS-2) contain the RP-220 sequence (residues 220–239) but differ in their C-terminal region (residues 293–342 and 293–325, respectively). Profiling of HEK293 proteins resulted in identification of two different sets of proteins specifically bound to RNLS-1 and RNLS-2, respectively. We thus demonstrate that the C-terminal region is crucial for specific binding of renalase to its targets and/or receptors.