Cargando…
Novel Human miRNA-Disease Association Inference Based on Random Forest
Since the first microRNA (miRNA) was discovered, a lot of studies have confirmed the associations between miRNAs and human complex diseases. Besides, obtaining and taking advantage of association information between miRNAs and diseases play an increasingly important role in improving the treatment l...
Autores principales: | Chen, Xing, Wang, Chun-Chun, Yin, Jun, You, Zhu-Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234518/ https://www.ncbi.nlm.nih.gov/pubmed/30439645 http://dx.doi.org/10.1016/j.omtn.2018.10.005 |
Ejemplares similares
-
HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2016) -
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction
por: Chen, Xing, et al.
Publicado: (2018) -
TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction
por: Chen, Xing, et al.
Publicado: (2018) -
An improved random forest-based computational model for predicting novel miRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2019) -
Network Consistency Projection for Human miRNA-Disease Associations Inference
por: Gu, Changlong, et al.
Publicado: (2016)