Cargando…
Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance
BACKGROUND: RNA-Sequencing analysis methods are rapidly evolving, and the tool choice for each step of one common workflow, differential expression analysis, which includes read alignment, expression modeling, and differentially expressed gene identification, has a dramatic impact on performance cha...
Autores principales: | Baccarella, Alyssa, Williams, Claire R., Parrish, Jay Z., Kim, Charles C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234607/ https://www.ncbi.nlm.nih.gov/pubmed/30428853 http://dx.doi.org/10.1186/s12859-018-2445-2 |
Ejemplares similares
-
Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq
por: Williams, Claire R., et al.
Publicado: (2017) -
Trimming of sequence reads alters RNA-Seq gene expression estimates
por: Williams, Claire R., et al.
Publicado: (2016) -
Local sequence and sequencing depth dependent accuracy of RNA-seq reads
por: Cai, Guoshuai, et al.
Publicado: (2017) -
Shark: fishing relevant reads in an RNA-Seq sample
por: Denti, Luca, et al.
Publicado: (2020) -
A Comparison of Low Read Depth QuantSeq 3′ Sequencing to Total RNA-Seq in FUS Mutant Mice
por: Jarvis, Seth, et al.
Publicado: (2020)