Cargando…

Identifying and Predicting Novelty in Microbiome Studies

With the expansion of microbiome sequencing globally, a key challenge is to relate new microbiome samples to the existing space of microbiome samples. Here, we present Microbiome Search Engine (MSE), which enables the rapid search of query microbiome samples against a large, well-curated reference m...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Xiaoquan, Jing, Gongchao, McDonald, Daniel, Wang, Honglei, Wang, Zengbin, Gonzalez, Antonio, Sun, Zheng, Huang, Shi, Navas, Jose, Knight, Rob, Xu, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234870/
https://www.ncbi.nlm.nih.gov/pubmed/30425147
http://dx.doi.org/10.1128/mBio.02099-18
Descripción
Sumario:With the expansion of microbiome sequencing globally, a key challenge is to relate new microbiome samples to the existing space of microbiome samples. Here, we present Microbiome Search Engine (MSE), which enables the rapid search of query microbiome samples against a large, well-curated reference microbiome database organized by taxonomic similarity at the whole-microbiome level. Tracking the microbiome novelty score (MNS) over 8 years of microbiome depositions based on searching in more than 100,000 global 16S rRNA gene amplicon samples, we detected that the structural novelty of human microbiomes is approaching saturation and likely bounded, whereas that in environmental habitats remains 5 times higher. Via the microbiome focus index (MFI), which is derived from the MNS and microbiome attention score (MAS), we objectively track and compare the structural-novelty and attracted-attention scores of individual microbiome samples and projects, and we predict future trends in the field. For example, marine and indoor environments and mother-baby interactions are likely to receive disproportionate additional attention based on recent trends. Therefore, MNS, MAS, and MFI are proposed “alt-metrics” for evaluating a microbiome project or prospective developments in the microbiome field, both of which are done in the context of existing microbiome big data.