Cargando…

Fluorescent nanodiamonds as a robust temperature sensor inside a single cell

Thermometers play an important role to study the biological significance of temperature. Fluorescent nanodiamonds (FNDs) with negatively-charged nitrogen-vacancy centers, a novel type of fluorescence-based temperature sensor, have physicochemical inertness, low cytotoxicity, extremely stable fluores...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekiguchi, Takeharu, Sotoma, Shingo, Harada, Yoshie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Biophysical Society of Japan (BSJ) 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234897/
https://www.ncbi.nlm.nih.gov/pubmed/30450272
http://dx.doi.org/10.2142/biophysico.15.0_229
Descripción
Sumario:Thermometers play an important role to study the biological significance of temperature. Fluorescent nanodiamonds (FNDs) with negatively-charged nitrogen-vacancy centers, a novel type of fluorescence-based temperature sensor, have physicochemical inertness, low cytotoxicity, extremely stable fluorescence, and unique magneto-optical properties that allow us to measure the temperature at the nanoscale level inside single cells. Here, we demonstrate that the thermosensing ability of FNDs is hardly influenced by environmental factors, such as pH, ion concentration, viscosity, molecular interaction, and organic solvent. This robustness renders FNDs reliable thermometers even under complex biological cellular environment. Moreover, the simple protocol developed here for measuring the absolute temperature inside a single cell using a single FND enables successful temperature measurement in a cell with an accuracy better than ±1°C.