Cargando…

Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative

INTRODUCTION: We characterize long-term disease dynamics from cognitively healthy to dementia using data from the Alzheimer's Disease Neuroimaging Initiative. METHODS: We apply a latent time joint mixed-effects model to 16 cognitive, functional, biomarker, and imaging outcomes in Alzheimer'...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dan, Iddi, Samuel, Thompson, Wesley K., Rafii, Michael S., Aisen, Paul S., Donohue, Michael C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234901/
https://www.ncbi.nlm.nih.gov/pubmed/30456292
http://dx.doi.org/10.1016/j.dadm.2018.07.008
_version_ 1783370796083707904
author Li, Dan
Iddi, Samuel
Thompson, Wesley K.
Rafii, Michael S.
Aisen, Paul S.
Donohue, Michael C.
author_facet Li, Dan
Iddi, Samuel
Thompson, Wesley K.
Rafii, Michael S.
Aisen, Paul S.
Donohue, Michael C.
author_sort Li, Dan
collection PubMed
description INTRODUCTION: We characterize long-term disease dynamics from cognitively healthy to dementia using data from the Alzheimer's Disease Neuroimaging Initiative. METHODS: We apply a latent time joint mixed-effects model to 16 cognitive, functional, biomarker, and imaging outcomes in Alzheimer's Disease Neuroimaging Initiative. Markov chain Monte Carlo methods are used for estimation and inference. RESULTS: We find good concordance between latent time and diagnosis. Change in amyloid positron emission tomography shows a moderate correlation with change in cerebrospinal fluid tau (ρ = 0.310) and phosphorylated tau (ρ = 0.294) and weaker correlation with amyloid-β 42 (ρ = 0.176). In comparison to amyloid positron emission tomography, change in volumetric magnetic resonance imaging summaries is more strongly correlated with cognitive measures (e.g., ρ = 0.731 for ventricles and Alzheimer's Disease Assessment Scale). The average disease trends are consistent with the amyloid cascade hypothesis. DISCUSSION: The latent time joint mixed-effects model can (1) uncover long-term disease trends; (2) estimate the sequence of pathological abnormalities; and (3) provide subject-specific prognostic estimates of the time until onset of symptoms.
format Online
Article
Text
id pubmed-6234901
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-62349012018-11-19 Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative Li, Dan Iddi, Samuel Thompson, Wesley K. Rafii, Michael S. Aisen, Paul S. Donohue, Michael C. Alzheimers Dement (Amst) Diagnostic Assessment & Prognosis INTRODUCTION: We characterize long-term disease dynamics from cognitively healthy to dementia using data from the Alzheimer's Disease Neuroimaging Initiative. METHODS: We apply a latent time joint mixed-effects model to 16 cognitive, functional, biomarker, and imaging outcomes in Alzheimer's Disease Neuroimaging Initiative. Markov chain Monte Carlo methods are used for estimation and inference. RESULTS: We find good concordance between latent time and diagnosis. Change in amyloid positron emission tomography shows a moderate correlation with change in cerebrospinal fluid tau (ρ = 0.310) and phosphorylated tau (ρ = 0.294) and weaker correlation with amyloid-β 42 (ρ = 0.176). In comparison to amyloid positron emission tomography, change in volumetric magnetic resonance imaging summaries is more strongly correlated with cognitive measures (e.g., ρ = 0.731 for ventricles and Alzheimer's Disease Assessment Scale). The average disease trends are consistent with the amyloid cascade hypothesis. DISCUSSION: The latent time joint mixed-effects model can (1) uncover long-term disease trends; (2) estimate the sequence of pathological abnormalities; and (3) provide subject-specific prognostic estimates of the time until onset of symptoms. Elsevier 2018-08-29 /pmc/articles/PMC6234901/ /pubmed/30456292 http://dx.doi.org/10.1016/j.dadm.2018.07.008 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Diagnostic Assessment & Prognosis
Li, Dan
Iddi, Samuel
Thompson, Wesley K.
Rafii, Michael S.
Aisen, Paul S.
Donohue, Michael C.
Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title_full Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title_fullStr Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title_full_unstemmed Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title_short Bayesian latent time joint mixed-effects model of progression in the Alzheimer's Disease Neuroimaging Initiative
title_sort bayesian latent time joint mixed-effects model of progression in the alzheimer's disease neuroimaging initiative
topic Diagnostic Assessment & Prognosis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234901/
https://www.ncbi.nlm.nih.gov/pubmed/30456292
http://dx.doi.org/10.1016/j.dadm.2018.07.008
work_keys_str_mv AT lidan bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative
AT iddisamuel bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative
AT thompsonwesleyk bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative
AT rafiimichaels bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative
AT aisenpauls bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative
AT donohuemichaelc bayesianlatenttimejointmixedeffectsmodelofprogressioninthealzheimersdiseaseneuroimaginginitiative