Cargando…

Effect of Fluorinert on the Histological Properties of Formalin-Fixed Human Brain Tissue

Fluorinert (perfluorocarbon) represents an inexpensive option for minimizing susceptibility artifacts in ex vivo brain MRI scanning, and provides an alternative to Fomblin. However, its impact on fixed tissue and histological analysis has not been rigorously and quantitatively validated. In this stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Iglesias, Juan Eugenio, Crampsie, Shauna, Strand, Catherine, Tachrount, Mohamed, Thomas, David L, Holton, Janice L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6234979/
https://www.ncbi.nlm.nih.gov/pubmed/30364998
http://dx.doi.org/10.1093/jnen/nly098
Descripción
Sumario:Fluorinert (perfluorocarbon) represents an inexpensive option for minimizing susceptibility artifacts in ex vivo brain MRI scanning, and provides an alternative to Fomblin. However, its impact on fixed tissue and histological analysis has not been rigorously and quantitatively validated. In this study, we excised tissue blocks from 2 brain regions (frontal pole and cerebellum) of 5 formalin-fixed specimens (2 progressive supranuclear palsy cases, 3 controls). We excised 2 blocks per region per case (20 blocks in total), one of which was subsequently immersed in Fluorinert for a week and then returned to a container with formalin. The other block from each region was kept in formalin for use as control. The tissue blocks were then sectioned and histological analysis was performed on each, including routine stains and immunohistochemistry. Visual inspection of the stained histological sections by an experienced neuropathologist through the microscope did not reveal any discernible differences between any of the samples. Moreover, quantitative analysis based on automated image patch classification showed that the samples were almost indistinguishable for a state-of-the-art classifier based on a deep convolutional neural network. The results showed that Fluorinert has no effect on subsequent histological analysis of the tissue even after a long (1 week) period of immersion, which is sufficient for even the lengthiest scanning protocols.