Cargando…
Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics
It is known that crowded molecular environment affects the structure, thermodynamics, and dynamics of macromolecules. Most of the previous works on molecular crowding have majorly focused on the behavior of the macromolecule with less emphasis on the behavior of the crowder and water molecules. In t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235303/ https://www.ncbi.nlm.nih.gov/pubmed/30427849 http://dx.doi.org/10.1371/journal.pone.0206359 |
_version_ | 1783370853428232192 |
---|---|
author | Jaiswal, Atul Kumar Srivastava, Rakesh Pandey, Preeti Bandyopadhyay, Pradipta |
author_facet | Jaiswal, Atul Kumar Srivastava, Rakesh Pandey, Preeti Bandyopadhyay, Pradipta |
author_sort | Jaiswal, Atul Kumar |
collection | PubMed |
description | It is known that crowded molecular environment affects the structure, thermodynamics, and dynamics of macromolecules. Most of the previous works on molecular crowding have majorly focused on the behavior of the macromolecule with less emphasis on the behavior of the crowder and water molecules. In the current study, we have precisely focused on the behavior of the crowder, (ethylene glycol (EG)), salt ions, and water in the presence of a DNA with the increase of the EG concentration. We have probed the behavior of water and crowder using molecular dynamics (MD) simulation and by calculating localized thermodynamic properties. Our results show an interesting competition between EG and water molecules to make hydrogen bonds (H-bond) with DNA. Although the total number of H-bonds involving DNA with both EG and water remains essentially same irrespective of the increase in EG concentration, there is a proportional change in the H-bonding pattern between water-water, EG-EG, and EG-water near DNA and in bulk. At low concentrations of EG, the displacement of water molecules near DNA is relatively easy. However, the displacement of water becomes more difficult as the concentration of EG increases. The density of Na(+) (Cl(-)) near DNA increases (decreases) as the concentration of EG is increased. The density of Cl(-) near Na(+) increases with the increase in EG concentration. It was also found that the average free energy per water in the first solvation shell increases with the increase in EG concentration. Putting all these together, a microscopic picture of EG, water, salt interaction in the presence of DNA, as a function of EG concentration, has emerged. |
format | Online Article Text |
id | pubmed-6235303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62353032018-12-01 Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics Jaiswal, Atul Kumar Srivastava, Rakesh Pandey, Preeti Bandyopadhyay, Pradipta PLoS One Research Article It is known that crowded molecular environment affects the structure, thermodynamics, and dynamics of macromolecules. Most of the previous works on molecular crowding have majorly focused on the behavior of the macromolecule with less emphasis on the behavior of the crowder and water molecules. In the current study, we have precisely focused on the behavior of the crowder, (ethylene glycol (EG)), salt ions, and water in the presence of a DNA with the increase of the EG concentration. We have probed the behavior of water and crowder using molecular dynamics (MD) simulation and by calculating localized thermodynamic properties. Our results show an interesting competition between EG and water molecules to make hydrogen bonds (H-bond) with DNA. Although the total number of H-bonds involving DNA with both EG and water remains essentially same irrespective of the increase in EG concentration, there is a proportional change in the H-bonding pattern between water-water, EG-EG, and EG-water near DNA and in bulk. At low concentrations of EG, the displacement of water molecules near DNA is relatively easy. However, the displacement of water becomes more difficult as the concentration of EG increases. The density of Na(+) (Cl(-)) near DNA increases (decreases) as the concentration of EG is increased. The density of Cl(-) near Na(+) increases with the increase in EG concentration. It was also found that the average free energy per water in the first solvation shell increases with the increase in EG concentration. Putting all these together, a microscopic picture of EG, water, salt interaction in the presence of DNA, as a function of EG concentration, has emerged. Public Library of Science 2018-11-14 /pmc/articles/PMC6235303/ /pubmed/30427849 http://dx.doi.org/10.1371/journal.pone.0206359 Text en © 2018 Jaiswal et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jaiswal, Atul Kumar Srivastava, Rakesh Pandey, Preeti Bandyopadhyay, Pradipta Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title | Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title_full | Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title_fullStr | Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title_full_unstemmed | Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title_short | Microscopic picture of water-ethylene glycol interaction near a model DNA by computer simulation: Concentration dependence, structure, and localized thermodynamics |
title_sort | microscopic picture of water-ethylene glycol interaction near a model dna by computer simulation: concentration dependence, structure, and localized thermodynamics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235303/ https://www.ncbi.nlm.nih.gov/pubmed/30427849 http://dx.doi.org/10.1371/journal.pone.0206359 |
work_keys_str_mv | AT jaiswalatulkumar microscopicpictureofwaterethyleneglycolinteractionnearamodeldnabycomputersimulationconcentrationdependencestructureandlocalizedthermodynamics AT srivastavarakesh microscopicpictureofwaterethyleneglycolinteractionnearamodeldnabycomputersimulationconcentrationdependencestructureandlocalizedthermodynamics AT pandeypreeti microscopicpictureofwaterethyleneglycolinteractionnearamodeldnabycomputersimulationconcentrationdependencestructureandlocalizedthermodynamics AT bandyopadhyaypradipta microscopicpictureofwaterethyleneglycolinteractionnearamodeldnabycomputersimulationconcentrationdependencestructureandlocalizedthermodynamics |