Cargando…
Long-term use of a neural prosthesis in progressive paralysis
Brain–computer interfaces (BCIs) enable communication with others and allow machines or computers to be controlled in the absence of motor activity. Clinical studies evaluating neural prostheses in amyotrophic lateral sclerosis (ALS) patients have been performed; however, to date, no study has repor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235856/ https://www.ncbi.nlm.nih.gov/pubmed/30429511 http://dx.doi.org/10.1038/s41598-018-35211-y |
Sumario: | Brain–computer interfaces (BCIs) enable communication with others and allow machines or computers to be controlled in the absence of motor activity. Clinical studies evaluating neural prostheses in amyotrophic lateral sclerosis (ALS) patients have been performed; however, to date, no study has reported that ALS patients who progressed from locked-in syndrome (LIS), which has very limited voluntary movement, to a completely locked-in state (CLIS), characterized by complete loss of voluntary movements, were able to continue controlling neural prostheses. To clarify this, we used a BCI system to evaluate three late-stage ALS patients over 27 months. We employed steady-state visual evoked brain potentials elicited by flickering green and blue light-emitting diodes to control the BCI system. All participants reliably controlled the system throughout the entire period (median accuracy: 83.3%). One patient who progressed to CLIS was able to continue operating the system with high accuracy. Furthermore, this patient successfully used the system to respond to yes/no questions. Thus, this CLIS patient was able to operate a neuroprosthetic device, suggesting that the BCI system confers advantages for patients with severe paralysis, including those exhibiting complete loss of muscle movement. |
---|