Cargando…
Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling
Aim: Multiple sclerosis is a severe brain and/or spinal cord disease. It may lead to a wide range of symptoms. Hence, the early diagnosis and treatment is quite important. Method: This study proposed a 14-layer convolutional neural network, combined with three advanced techniques: batch normalizatio...
Autores principales: | Wang, Shui-Hua, Tang, Chaosheng, Sun, Junding, Yang, Jingyuan, Huang, Chenxi, Phillips, Preetha, Zhang, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236001/ https://www.ncbi.nlm.nih.gov/pubmed/30467462 http://dx.doi.org/10.3389/fnins.2018.00818 |
Ejemplares similares
-
GAM-SpCaNet: Gradient awareness minimization-based spinal convolution attention network for brain tumor classification
por: Tang, Chaosheng, et al.
Publicado: (2023) -
MFBCNNC: Momentum factor biogeography convolutional neural network for COVID-19 detection via chest X-ray images [Image: see text]
por: Sun, Junding, et al.
Publicado: (2021) -
A five-layer deep convolutional neural network with stochastic pooling for chest CT-based COVID-19 diagnosis
por: Zhang, Yu-Dong, et al.
Publicado: (2020) -
A Seven-Layer Convolutional Neural Network for Chest CT-Based COVID-19 Diagnosis Using Stochastic Pooling
Publicado: (2020) -
Stochastic Selection of Activation Layers for Convolutional Neural Networks
por: Nanni, Loris, et al.
Publicado: (2020)