Cargando…

Protective effect of docosahexaenoic acid on lipotoxicity‐mediated cell death in Schwann cells: Implication of PI3K/AKT and mTORC2 pathways

BACKGROUND AND AIM: Docosahexaenoic acid (DHA) exhibits neuroprotective properties and has been shown to preserve nerve cells following trauma and ischemic injury. Recently, we showed that DHA pretreatment improved locomotion and reduced neuropathic pain after acute spinal cord injury in adult rats....

Descripción completa

Detalles Bibliográficos
Autores principales: Descorbeth, Magda, Figueroa, Karen, Serrano‐Illán, Miguel, De León, Marino
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236228/
https://www.ncbi.nlm.nih.gov/pubmed/30264903
http://dx.doi.org/10.1002/brb3.1123
Descripción
Sumario:BACKGROUND AND AIM: Docosahexaenoic acid (DHA) exhibits neuroprotective properties and has been shown to preserve nerve cells following trauma and ischemic injury. Recently, we showed that DHA pretreatment improved locomotion and reduced neuropathic pain after acute spinal cord injury in adult rats. These improvements were associated with an increase in the levels of AKT in spinal cord injury neurons. In this study, we investigate the implication of PI3K/AKT and mTOR pathway in DHA‐mediated protection of primary cultured Schwann cells (pSC) undergoing palmitic acid‐induced lipotoxicity (PA‐LTx). METHODS: Primary cultured Schwann cells were treated with PA (PA:BSA, 2:1) in the presence or absence of DHA (1–200 µM) for 24–48 hr. Cell viability was determined by crystal violet staining and nuclear morphology was examined using Hoechst staining. RESULTS: We found that pSC cultures exposed to palmitic acid (PA) overload showed chromatin condensation, a decrease in cell viability and an inhibition of AKT phosphorylation in a time‐dependent manner. Next, pSC exposed to PA overload were treated with DHA. The data show that co‐treatment with DHA inhibited the loss of cell viability and apoptosis caused by PA. Moreover, treatment with DHA inhibited chromatin condensation, significantly stimulated p‐AKT phosphorylation under PA‐LTx condition, and DHA alone increased AKT phosphorylation. Additionally, when these pSC cultures were treated with PI3K inhibitors LY294002 and, BKM120 and mTOR inhibitors Torin 1 (mTORC1/mTORC2), but not rapamycin (mTORC1), the protective effects of DHA were not observed. CONCLUSION: These findings suggest PI3K/AKT and mTORC2 kinase pathways are involved in the protective function (s) of DHA in PA‐induced Schwann cell death.