Cargando…
Overexpression of miR-146a blocks the effect of LPS on RANKL-induced osteoclast differentiation
The concept that inflammation serves a leading role in osteoclast-induced bone loss under pathological circumstances is now widely accepted. In the present study, it was observed that lipopolysaccharides (LPSs) demonstrated a synergic effect on receptor activator of nuclear factor κ-B ligand (RANKL)...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236290/ https://www.ncbi.nlm.nih.gov/pubmed/30387844 http://dx.doi.org/10.3892/mmr.2018.9610 |
Sumario: | The concept that inflammation serves a leading role in osteoclast-induced bone loss under pathological circumstances is now widely accepted. In the present study, it was observed that lipopolysaccharides (LPSs) demonstrated a synergic effect on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclast differentiation in Raw264.7 cells, with increasing levels of multiple pro-inflammatory cytokines including interleukin (IL)-6, tumor necrosis factor-α and IL-1β. Furthermore, microRNA (miR)-146a was highly induced by LPS and RANKL co-stimulation during the process of osteoclast differentiation. Overexpression of miR-146a inhibited osteoclast transformation by targeting the key regulators of nuclear factor (NF)-κβ signaling, TNF receptor-associated factor 6 and interleukin-1 receptor-associated kinase 1. The downstream activation of NF-κβ signaling was also inhibited by transfection with a miR-146a mimic. Altogether, the results of the present study demonstrated that miR-146a prevents osteoclast differentiation induced by LPS and RANKL co-stimulation, suggesting that miR-146a may be a promising therapeutic target for treatment of inflammation mediated bone loss. |
---|