Cargando…
Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection
The KDD CUP 1999 intrusion detection dataset was introduced at the third international knowledge discovery and data mining tools competition, and it has been widely used for many studies. The attack types of KDD CUP 1999 dataset are divided into four categories: user to root (U2R), remote to local (...
Autores principales: | Seo, Jae-Hyun, Kim, Yong-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236522/ https://www.ncbi.nlm.nih.gov/pubmed/30515202 http://dx.doi.org/10.1155/2018/9704672 |
Ejemplares similares
-
Wireless Sensor Networks Intrusion Detection Based on SMOTE and the Random Forest Algorithm
por: Tan, Xiaopeng, et al.
Publicado: (2019) -
The Effect of Dataset Imbalance on the Performance of SCADA Intrusion Detection Systems
por: Balla, Asaad, et al.
Publicado: (2023) -
Tomek Link and SMOTE Approaches for Machine Fault Classification with an Imbalanced Dataset
por: Swana, Elsie Fezeka, et al.
Publicado: (2022) -
SMOTE-CD: SMOTE for compositional data
por: Nguyen, Teo, et al.
Publicado: (2023) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013)