Cargando…
Generalization Bounds for Coregularized Multiple Kernel Learning
Multiple kernel learning (MKL) as an approach to automated kernel selection plays an important role in machine learning. Some learning theories have been built to analyze the generalization of multiple kernel learning. However, less work has been studied on multiple kernel learning in the framework...
Autores principales: | Wu, Xinxing, Hu, Guosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236656/ https://www.ncbi.nlm.nih.gov/pubmed/30515195 http://dx.doi.org/10.1155/2018/1853517 |
Ejemplares similares
-
Online Coregularization for Multiview Semisupervised Learning
por: Sun, Boliang, et al.
Publicado: (2013) -
Desingularizing weights and the heat kernel bounds
por: Milman, P D, et al.
Publicado: (2001) -
PIMKL: Pathway-Induced Multiple Kernel Learning
por: Manica, Matteo, et al.
Publicado: (2019) -
Global heat kernel bounds via desingularizing weights
por: Milman, P D, et al.
Publicado: (2003) -
Calpain Cleavage Prediction Using Multiple Kernel Learning
por: duVerle, David A., et al.
Publicado: (2011)