Cargando…
Quantitative variations in texture analysis features dependent on MRI scanning parameters: A phantom model
OBJECTIVES: To evaluate the influence of MRI scanning parameters on texture analysis features. METHODS: Publicly available data from the Reference Image Database to Evaluate Therapy Response (RIDER) project sponsored by The Cancer Imaging Archive included MRIs on a phantom comprised of 18 25‐mm dope...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236836/ https://www.ncbi.nlm.nih.gov/pubmed/30369010 http://dx.doi.org/10.1002/acm2.12482 |
Sumario: | OBJECTIVES: To evaluate the influence of MRI scanning parameters on texture analysis features. METHODS: Publicly available data from the Reference Image Database to Evaluate Therapy Response (RIDER) project sponsored by The Cancer Imaging Archive included MRIs on a phantom comprised of 18 25‐mm doped, gel‐filled tubes, and 1 20‐mm tube containing 0.25 mM Gd‐DTPA (EuroSpinII Test Object5, Diagnostic Sonar, Ltd, West Lothian, Scotland). MRIs performed on a 1.5 T GE HD, 1.5 T Siemens Espree (VB13), or 3.0 T GE HD with TwinSpeed gradients with an eight‐channel head coil included T1WIs with multiple flip angles (flip‐angle = 2,5,10,15,20,25,30), TR/TE = 4.09–5.47/0.90–1.35 ms, NEX = 1 and DCE with 30° flip‐angle, TR/TE=4.09–5.47/0.90–1.35, and NEX = 1,4. DICOM data were imported into an in‐house developed texture analysis program which extracted 41‐texture features including histogram, gray‐level co‐occurrence matrix (GLCM), and gray‐level run‐length (GLRL). Two‐tailed t tests, corrected for multiple comparisons (Q values) were calculated to compare changes in texture features with variations in MRI scanning parameters (magnet strength, flip‐angle, number of excitations (NEX), scanner platform). RESULTS: Significant differences were seen in histogram features (mean, median, standard deviation, range) with variations in NEX (Q = 0.003–0.045) and scanner platform (Q < 0.0001), GLCM features (entropy, contrast, energy, and homogeneity) with NEX (Q = 0.001–0.018) and scanner platform (Q < 0.0001), GLRL features (long‐run emphasis, high gray‐level run emphasis, high gray‐level emphasis) with magnet strength (Q = 0.0003), NEX (Q = 0.003–0.022) and scanner platform (Q < 0.0001). CONCLUSION: Significant differences were seen in many texture features with variations in MRI acquisition emphasizing the need for standardized MRI technique. |
---|