Cargando…

Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model

BACKGROUND: Lipid dysregulation is a classical risk factor for cardiovascular disease (CVD), yet scanty evidence existed regarding cardiac lipid metabolism that is directly related to heart damage. Recently, the relationship between dyslipidemia and pro-inflammatory insults has led to further unders...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Qian, Yeung, Sze C., Ip, Mary S. M., Mak, Judith C. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237003/
https://www.ncbi.nlm.nih.gov/pubmed/30428911
http://dx.doi.org/10.1186/s12944-018-0905-3
Descripción
Sumario:BACKGROUND: Lipid dysregulation is a classical risk factor for cardiovascular disease (CVD), yet scanty evidence existed regarding cardiac lipid metabolism that is directly related to heart damage. Recently, the relationship between dyslipidemia and pro-inflammatory insults has led to further understanding on the CVD-predisposing effects of dyslipidemia. The aims of the present study were to investigate whether high-fat high-cholesterol (HFHC) diet-induced hyperlipidemia would cause heart damage and to study the potential role of local cardiac lipid dysregulation in the occurrence of cellular injury. METHODS: Male Sprague–Dawley rats were divided into normal chow or HFHC diet groups, and sacrificed after 2 or 4 weeks, respectively. Lipid peroxidation marker level was measured. Lipid parameters in the rat hearts were detected. Cardiac damage was evaluated. RESULTS: HFHC diet increased serum levels of cholesterol and free fatty acids (FFAs) and led to systemic oxidative stress and pro-inflammatory status. Cardiac lipid dysregulation, which was characterized by elevated levels of cholesterol and adipocyte (A)- and heart (H)-fatty acid binding proteins (FABPs), occurred after HFHC diet for 4 weeks. Cardiac damage was further evident with elevated circulating H-FABP levels, increased cardiac interstitial fibrosis and the loss of troponin I. CONCLUSION: Our data demonstrated that HFHC diet led to systemic and cardiac lipid dysregulation, accompanied by systemic oxidative and pro-inflammatory stresses, and these may finally cooperate to cause a series of pathological changes of the heart tissue. Our findings suggest that maintenance of lipid regulation may be essential in the prevention of heart damage.