Cargando…
Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2
BACKGROUND: Stromal cell-derived factor 1 (SDF-1) is an important chemokine for stem cell mobilization, and plays a critical role in mobilization of mesenchymal stem cells (MSCs). Bone morphogenetic protein 2 (BMP-2) plays a critical role in osteogenesis of MSCs. However, the use of SDF-1 and BMP-2...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237249/ https://www.ncbi.nlm.nih.gov/pubmed/30519022 http://dx.doi.org/10.2147/IJN.S180859 |
_version_ | 1783371161884688384 |
---|---|
author | Wang, Bin Guo, Yuanwei Chen, Xiaofeng Zeng, Chao Hu, Qikang Yin, Wei Li, Wei Xie, Hui Zhang, Bingyu Huang, Xingchun Yu, Fenglei |
author_facet | Wang, Bin Guo, Yuanwei Chen, Xiaofeng Zeng, Chao Hu, Qikang Yin, Wei Li, Wei Xie, Hui Zhang, Bingyu Huang, Xingchun Yu, Fenglei |
author_sort | Wang, Bin |
collection | PubMed |
description | BACKGROUND: Stromal cell-derived factor 1 (SDF-1) is an important chemokine for stem cell mobilization, and plays a critical role in mobilization of mesenchymal stem cells (MSCs). Bone morphogenetic protein 2 (BMP-2) plays a critical role in osteogenesis of MSCs. However, the use of SDF-1 and BMP-2 in bone tissue engineering is limited by their short half-lives and rapid degradation in vitro and in vivo. METHODS: The chitosan oligosaccharide/heparin nanoparticles (CSO/H NPs) were first prepared via self-assembly. Chitosan-agarose-gelatin (CAG) Scaffolds were then synthesized via gelation technology using cross-linked chitosan, agarose, and gelatin, and were modified by CSO/H NPs. The encapsulation efficiency and release kinetics of SDF-1 and BMP-2 were quantified using an enzyme-linked immunosorbent assay. A CCK-8 assays were used to evaluate biocompatibility of NP-modified scaffolds. The biological activity of the loaded SDF-1 and BMP-2 was evaluated using the transwell migration assay and osteogenic induction assay. An animal MSC recruitment model was used to study the ability of SDF-1 released from NP-modified scaffolds to induce migration of MSCs. RESULTS: In this study, we developed a novel nanoparticle-modified CAG scaffold for the delivery of SDF-1 and BMP-2. CCK-8 assays demonstrated excellent biocompatibility of NP-modified scaffolds. In addition, we investigated the release of SDF-1 and BMP-2 from NP-modified scaffolds, and evaluated the effect of released SDF-1 on MSC migration. The effect of released BMP-2 on MSC osteogenesis was also examined. In vitro cell migration assays showed that SDF-1 released from NP-modified scaffolds retained its migration activity; osteogenesis studies demonstrated that released BMP-2 exhibited a strong ability to induce differentiation towards osteoblasts. Our in vivo recruitment assays showed continuous chemotactic response of MSCs to SDF-1 released from the NP-modified scaffold. CONCLUSION: The simplicity of synthesizing CSO/H NP-modified CAG scaffolds, combined with its high cytokine loading capacity and sustained release effect, renders NP-modified CAG scaffold an attractive candidate for sustained release of SDF-1 and BMP-2 to promote bone repair and regeneration. |
format | Online Article Text |
id | pubmed-6237249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-62372492018-12-05 Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 Wang, Bin Guo, Yuanwei Chen, Xiaofeng Zeng, Chao Hu, Qikang Yin, Wei Li, Wei Xie, Hui Zhang, Bingyu Huang, Xingchun Yu, Fenglei Int J Nanomedicine Original Research BACKGROUND: Stromal cell-derived factor 1 (SDF-1) is an important chemokine for stem cell mobilization, and plays a critical role in mobilization of mesenchymal stem cells (MSCs). Bone morphogenetic protein 2 (BMP-2) plays a critical role in osteogenesis of MSCs. However, the use of SDF-1 and BMP-2 in bone tissue engineering is limited by their short half-lives and rapid degradation in vitro and in vivo. METHODS: The chitosan oligosaccharide/heparin nanoparticles (CSO/H NPs) were first prepared via self-assembly. Chitosan-agarose-gelatin (CAG) Scaffolds were then synthesized via gelation technology using cross-linked chitosan, agarose, and gelatin, and were modified by CSO/H NPs. The encapsulation efficiency and release kinetics of SDF-1 and BMP-2 were quantified using an enzyme-linked immunosorbent assay. A CCK-8 assays were used to evaluate biocompatibility of NP-modified scaffolds. The biological activity of the loaded SDF-1 and BMP-2 was evaluated using the transwell migration assay and osteogenic induction assay. An animal MSC recruitment model was used to study the ability of SDF-1 released from NP-modified scaffolds to induce migration of MSCs. RESULTS: In this study, we developed a novel nanoparticle-modified CAG scaffold for the delivery of SDF-1 and BMP-2. CCK-8 assays demonstrated excellent biocompatibility of NP-modified scaffolds. In addition, we investigated the release of SDF-1 and BMP-2 from NP-modified scaffolds, and evaluated the effect of released SDF-1 on MSC migration. The effect of released BMP-2 on MSC osteogenesis was also examined. In vitro cell migration assays showed that SDF-1 released from NP-modified scaffolds retained its migration activity; osteogenesis studies demonstrated that released BMP-2 exhibited a strong ability to induce differentiation towards osteoblasts. Our in vivo recruitment assays showed continuous chemotactic response of MSCs to SDF-1 released from the NP-modified scaffold. CONCLUSION: The simplicity of synthesizing CSO/H NP-modified CAG scaffolds, combined with its high cytokine loading capacity and sustained release effect, renders NP-modified CAG scaffold an attractive candidate for sustained release of SDF-1 and BMP-2 to promote bone repair and regeneration. Dove Medical Press 2018-11-12 /pmc/articles/PMC6237249/ /pubmed/30519022 http://dx.doi.org/10.2147/IJN.S180859 Text en © 2018 Wang et al. This work is published and licensed by Dove Medical Press Limited The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Wang, Bin Guo, Yuanwei Chen, Xiaofeng Zeng, Chao Hu, Qikang Yin, Wei Li, Wei Xie, Hui Zhang, Bingyu Huang, Xingchun Yu, Fenglei Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title | Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title_full | Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title_fullStr | Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title_full_unstemmed | Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title_short | Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2 |
title_sort | nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of sdf-1 and bmp-2 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237249/ https://www.ncbi.nlm.nih.gov/pubmed/30519022 http://dx.doi.org/10.2147/IJN.S180859 |
work_keys_str_mv | AT wangbin nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT guoyuanwei nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT chenxiaofeng nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT zengchao nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT huqikang nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT yinwei nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT liwei nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT xiehui nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT zhangbingyu nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT huangxingchun nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 AT yufenglei nanoparticlemodifiedchitosanagarosegelatinscaffoldforsustainedreleaseofsdf1andbmp2 |