Cargando…
Predicting the clinical impact of human mutation with deep neural networks
Millions of human genomes and exomes have been sequenced, but their clinical applications remain limited due to the difficulty of distinguishing disease-causing mutations from benign genetic variation. Here we demonstrate that common missense variants in other primate species are largely clinically...
Autores principales: | Sundaram, Laksshman, Gao, Hong, Padigepati, Samskruthi Reddy, McRae, Jeremy F., Li, Yanjun, Kosmicki, Jack A., Fritzilas, Nondas, Hakenberg, Jörg, Dutta, Anindita, Shon, John, Xu, Jinbo, Batzoglou, Serafim, Li, Xiaolin, Farh, Kyle Kai-How |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237276/ https://www.ncbi.nlm.nih.gov/pubmed/30038395 http://dx.doi.org/10.1038/s41588-018-0167-z |
Ejemplares similares
-
Application of independent component analysis to microarrays
por: Lee, Su-In, et al.
Publicado: (2003) -
Using multiple alignments to improve seeded local alignment algorithms
por: Flannick, Jason, et al.
Publicado: (2005) -
Editorial
por: Batzoglou, Serafim, et al.
Publicado: (2014) -
A hybrid cloud read aligner based on MinHash and kmer voting that preserves privacy
por: Popic, Victoria, et al.
Publicado: (2017) -
Clinical impact of splicing in neurodevelopmental disorders
por: Sanders, Stephan J., et al.
Publicado: (2020)