Cargando…
Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion
OBJECTIVE: To (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor. METHODS: Twelve sterile, commercially packa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237400/ https://www.ncbi.nlm.nih.gov/pubmed/30440023 http://dx.doi.org/10.1371/journal.pone.0207471 |
_version_ | 1783371189631057920 |
---|---|
author | Anderson, Thomas S. Rance, Graham A. Jiang, Long Piggott, Matthew J. Field, Elinor J. Chanoit, Guillaume P. |
author_facet | Anderson, Thomas S. Rance, Graham A. Jiang, Long Piggott, Matthew J. Field, Elinor J. Chanoit, Guillaume P. |
author_sort | Anderson, Thomas S. |
collection | PubMed |
description | OBJECTIVE: To (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor. METHODS: Twelve sterile, commercially packaged ameroid constrictors (3 repeats of 3.5 mm, 5 mm, 6 mm and 7 mm internal diameter) were analysed by time-of-flight secondary ion mass spectrometry, Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and scanning electron microscopy. RESULTS: Ameroid constrictors have a composition commensurate with casein with little-to-no intra- or inter- constrictor variation. Microscopic analysis indicated that the topographical features of the constrictor surfaces were consistent between all constrictors. Following in vitro expansion there was a reproducible decrease in Ca(+) ion content, little-to-no variation in secondary protein structure and morphological changes including the presence of surface aggregates present only at the inner surface of the ameroid constrictor. The potential irritant polydimethylsiloxane was found on the constrictor surface. A trace quantity of an ion fragment assigned as formaldehyde was detected; however, the extremely low level is thought highly unlikely to play a role as an inflammatory trigger clinically. DISCUSSION: There is a high degree of inter- and intra-constrictor homogeneity from different batches, and reproducible ultrastructural changes following in vitro expansion. Variations occur in both the surface chemistry and topography of the device during closure, which can potentially affect the biomaterial-host interface. Ameroid constrictor closure mechanism is likely involving calcium-mediated inter-protein interactions rather than the imbibition of water only. |
format | Online Article Text |
id | pubmed-6237400 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62374002018-12-01 Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion Anderson, Thomas S. Rance, Graham A. Jiang, Long Piggott, Matthew J. Field, Elinor J. Chanoit, Guillaume P. PLoS One Research Article OBJECTIVE: To (1) characterise the chemical and ultra-structural composition of ameroid constrictors, at a native state and during in vitro expansion and (2) determine the presence of irritant compounds at the surface or within the bulk of the constrictor. METHODS: Twelve sterile, commercially packaged ameroid constrictors (3 repeats of 3.5 mm, 5 mm, 6 mm and 7 mm internal diameter) were analysed by time-of-flight secondary ion mass spectrometry, Raman spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and scanning electron microscopy. RESULTS: Ameroid constrictors have a composition commensurate with casein with little-to-no intra- or inter- constrictor variation. Microscopic analysis indicated that the topographical features of the constrictor surfaces were consistent between all constrictors. Following in vitro expansion there was a reproducible decrease in Ca(+) ion content, little-to-no variation in secondary protein structure and morphological changes including the presence of surface aggregates present only at the inner surface of the ameroid constrictor. The potential irritant polydimethylsiloxane was found on the constrictor surface. A trace quantity of an ion fragment assigned as formaldehyde was detected; however, the extremely low level is thought highly unlikely to play a role as an inflammatory trigger clinically. DISCUSSION: There is a high degree of inter- and intra-constrictor homogeneity from different batches, and reproducible ultrastructural changes following in vitro expansion. Variations occur in both the surface chemistry and topography of the device during closure, which can potentially affect the biomaterial-host interface. Ameroid constrictor closure mechanism is likely involving calcium-mediated inter-protein interactions rather than the imbibition of water only. Public Library of Science 2018-11-15 /pmc/articles/PMC6237400/ /pubmed/30440023 http://dx.doi.org/10.1371/journal.pone.0207471 Text en © 2018 Anderson et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Anderson, Thomas S. Rance, Graham A. Jiang, Long Piggott, Matthew J. Field, Elinor J. Chanoit, Guillaume P. Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title | Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title_full | Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title_fullStr | Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title_full_unstemmed | Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title_short | Changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
title_sort | changes in chemical and ultrastructural composition of ameroid constrictors following in vitro expansion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237400/ https://www.ncbi.nlm.nih.gov/pubmed/30440023 http://dx.doi.org/10.1371/journal.pone.0207471 |
work_keys_str_mv | AT andersonthomass changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion AT rancegrahama changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion AT jianglong changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion AT piggottmatthewj changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion AT fieldelinorj changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion AT chanoitguillaumep changesinchemicalandultrastructuralcompositionofameroidconstrictorsfollowinginvitroexpansion |