Cargando…
Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime
In his seminal work, Taylor (1963 Proc. R. Soc. Lond. A 274, 274–283. (doi:10.1098/rspa.1963.0130).) argued that the geophysically relevant limit for dynamo action within the outer core is one of negligibly small inertia and viscosity in the magnetohydrodynamic equations. Within this limit, he showe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237501/ https://www.ncbi.nlm.nih.gov/pubmed/30839837 http://dx.doi.org/10.1098/rspa.2018.0412 |
_version_ | 1783371195238842368 |
---|---|
author | Hardy, Colin M. Livermore, Philip W. Niesen, Jitse Luo, Jiawen Li, Kuan |
author_facet | Hardy, Colin M. Livermore, Philip W. Niesen, Jitse Luo, Jiawen Li, Kuan |
author_sort | Hardy, Colin M. |
collection | PubMed |
description | In his seminal work, Taylor (1963 Proc. R. Soc. Lond. A 274, 274–283. (doi:10.1098/rspa.1963.0130).) argued that the geophysically relevant limit for dynamo action within the outer core is one of negligibly small inertia and viscosity in the magnetohydrodynamic equations. Within this limit, he showed the existence of a necessary condition, now well known as Taylor's constraint, which requires that the cylindrically averaged Lorentz torque must everywhere vanish; magnetic fields that satisfy this condition are termed Taylor states. Taylor further showed that the requirement of this constraint being continuously satisfied through time prescribes the evolution of the geostrophic flow, the cylindrically averaged azimuthal flow. We show that Taylor's original prescription for the geostrophic flow, as satisfying a given second-order ordinary differential equation, is only valid for a small subset of Taylor states. An incomplete treatment of the boundary conditions renders his equation generally incorrect. Here, by taking proper account of the boundaries, we describe a generalization of Taylor's method that enables correct evaluation of the instantaneous geostrophic flow for any three-dimensional Taylor state. We present the first full-sphere examples of geostrophic flows driven by non-axisymmetric Taylor states. Although in axisymmetry the geostrophic flow admits a mild logarithmic singularity on the rotation axis, in the fully three-dimensional case we show that this is absent and indeed the geostrophic flow appears to be everywhere regular. |
format | Online Article Text |
id | pubmed-6237501 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-62375012018-12-25 Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime Hardy, Colin M. Livermore, Philip W. Niesen, Jitse Luo, Jiawen Li, Kuan Proc Math Phys Eng Sci Research Articles In his seminal work, Taylor (1963 Proc. R. Soc. Lond. A 274, 274–283. (doi:10.1098/rspa.1963.0130).) argued that the geophysically relevant limit for dynamo action within the outer core is one of negligibly small inertia and viscosity in the magnetohydrodynamic equations. Within this limit, he showed the existence of a necessary condition, now well known as Taylor's constraint, which requires that the cylindrically averaged Lorentz torque must everywhere vanish; magnetic fields that satisfy this condition are termed Taylor states. Taylor further showed that the requirement of this constraint being continuously satisfied through time prescribes the evolution of the geostrophic flow, the cylindrically averaged azimuthal flow. We show that Taylor's original prescription for the geostrophic flow, as satisfying a given second-order ordinary differential equation, is only valid for a small subset of Taylor states. An incomplete treatment of the boundary conditions renders his equation generally incorrect. Here, by taking proper account of the boundaries, we describe a generalization of Taylor's method that enables correct evaluation of the instantaneous geostrophic flow for any three-dimensional Taylor state. We present the first full-sphere examples of geostrophic flows driven by non-axisymmetric Taylor states. Although in axisymmetry the geostrophic flow admits a mild logarithmic singularity on the rotation axis, in the fully three-dimensional case we show that this is absent and indeed the geostrophic flow appears to be everywhere regular. The Royal Society Publishing 2018-10 2018-10-03 /pmc/articles/PMC6237501/ /pubmed/30839837 http://dx.doi.org/10.1098/rspa.2018.0412 Text en © 2018 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Hardy, Colin M. Livermore, Philip W. Niesen, Jitse Luo, Jiawen Li, Kuan Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title | Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title_full | Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title_fullStr | Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title_full_unstemmed | Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title_short | Determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
title_sort | determination of the instantaneous geostrophic flow within the three-dimensional magnetostrophic regime |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237501/ https://www.ncbi.nlm.nih.gov/pubmed/30839837 http://dx.doi.org/10.1098/rspa.2018.0412 |
work_keys_str_mv | AT hardycolinm determinationoftheinstantaneousgeostrophicflowwithinthethreedimensionalmagnetostrophicregime AT livermorephilipw determinationoftheinstantaneousgeostrophicflowwithinthethreedimensionalmagnetostrophicregime AT niesenjitse determinationoftheinstantaneousgeostrophicflowwithinthethreedimensionalmagnetostrophicregime AT luojiawen determinationoftheinstantaneousgeostrophicflowwithinthethreedimensionalmagnetostrophicregime AT likuan determinationoftheinstantaneousgeostrophicflowwithinthethreedimensionalmagnetostrophicregime |