Cargando…

Long noncoding RNA CASC9/miR‐519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis

Emerging evidence have illustrated the vital roles of long noncoding RNAs (lncRNAs) in glioma. Nevertheless, the majority of their roles and mechanisms in gliomagenesis are still largely unclear. In this study, we investigate the roles of lncRNA CASC9 on glioma tumourigenesis and authenticate its po...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Hongjiang, Li, Chen, Yang, Jiankai, Sun, Yuchen, Zhang, Shunyao, Yang, Jipeng, Yang, Liang, Wang, Yuanyu, Jiao, Baohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237610/
https://www.ncbi.nlm.nih.gov/pubmed/30270508
http://dx.doi.org/10.1111/jcmm.13932
Descripción
Sumario:Emerging evidence have illustrated the vital roles of long noncoding RNAs (lncRNAs) in glioma. Nevertheless, the majority of their roles and mechanisms in gliomagenesis are still largely unclear. In this study, we investigate the roles of lncRNA CASC9 on glioma tumourigenesis and authenticate its potential mechanisms. Results manifested that CASC9 was highly expressed in glioma specimens and cells, moreover, the ectopic overexpression was correlated with glioma patients’ clinic. Functional studies found that siRNA‐mediated CASC9 silencing inhibited the proliferative ability, invasion in vitro, and impaired the tumour growth in vivo. Mechanical studies revealed that miR‐519d both targeted the 3′‐UTR of CASC9 and STAT3 mRNA, which was identified by luciferase reporter assay and RNA immunoprecipitation (RIP). Moreover, chromatin immunoprecipitation (ChIP) and luciferase reporter assay revealed that STAT3, an oncogenic transcription factor, could bind with the promoter of CASC9 and activate its transcriptional level. In conclusion, our results concluded that CASC9 promotes STAT3 expression via sponging miR‐519d, in return, STAT3 activate CASC9 transcription, forming a positive feedback loop of CASC9/miR‐519d/STAT3. The novel finding provides a potential therapeutic target for glioma.