Cargando…

Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing

Alternative splicing (AS) is a regulatory mechanism of gene expression that greatly expands the coding capacities of genomes by allowing the generation of multiple mRNAs from a single gene. In Drosophila, the mod(mdg4) locus is an extreme example of AS that produces more than 30 different mRNAs via...

Descripción completa

Detalles Bibliográficos
Autores principales: Tikhonov, Maxim, Utkina, Marina, Maksimenko, Oksana, Georgiev, Pavel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237743/
https://www.ncbi.nlm.nih.gov/pubmed/30102331
http://dx.doi.org/10.1093/nar/gky716
Descripción
Sumario:Alternative splicing (AS) is a regulatory mechanism of gene expression that greatly expands the coding capacities of genomes by allowing the generation of multiple mRNAs from a single gene. In Drosophila, the mod(mdg4) locus is an extreme example of AS that produces more than 30 different mRNAs via trans-splicing that joins together the common exons and the 3′ variable exons generated from alternative promoters. To map the regions required for trans-splicing, we have developed an assay for measuring trans-splicing events and identified a 73-bp region in the last common intron that is critical for trans-splicing of three pre-mRNAs synthesized from different DNA strands. We have also found that conserved sequences in the distal part of the last common intron induce polyadenylation-independent transcription termination and are enriched by paused RNA polymerase II (RNAP II). These results suggest that all mod(mdg4) mRNAs are formed by joining in trans the 5′ splice site in the last common exon with the 3′ splice site in one of the alternative exons.