Cargando…
On the Hydrogen Bond Strength and Vibrational Spectroscopy of Liquid Water
In the present work, we introduce two new metrics i.e. hydrogen-bond strength and charge-transfer between the donor/acceptor water molecules as a measure of hydrogen-bond rearrangement dynamics. Further, we also employ a simple model based on energy flux through the donor-acceptor water pairs to qua...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6237855/ https://www.ncbi.nlm.nih.gov/pubmed/30443040 http://dx.doi.org/10.1038/s41598-018-35357-9 |
Sumario: | In the present work, we introduce two new metrics i.e. hydrogen-bond strength and charge-transfer between the donor/acceptor water molecules as a measure of hydrogen-bond rearrangement dynamics. Further, we also employ a simple model based on energy flux through the donor-acceptor water pairs to quantify the extent of the local hydrogen-bond network reorganization. Most importantly, we report a linear relationship between the OH stretch frequency and the charge and energy transfer through donor-acceptor water pairs. We demonstrate that the vibrational frequency fluctuations, which are used to determine third-order non-linear spectroscopic observables like the short-time slope of three pulse photon echo, can be used as an analog of the fluctuations in the hydrogen-bond strength and charge-transfer. The timescales obtained from our hydrogen-bond strength correlation and charge-transfer correlation decay are in excellent agreement with the computed frequency-time correlation function, as well as with recent vibrational echo experiments. |
---|