Cargando…
Effect of Ground Chopi (Zanthoxylum piperitum) on Physicochemical Traits and Microbial Community of Chicken Summer Sausage during Manufacture
Changes in microbial community and physicochemical traits of chicken summer sausage made from spent layer thigh added with different level (0%, 0.1%, 0.3%, and 0.5% w/w) of ground chopi (Zanthoxylum piperitum) during manufacture were analyzed. The microbial community was profiled and analyzed by seq...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Food Science of Animal Resources
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238041/ https://www.ncbi.nlm.nih.gov/pubmed/30479501 http://dx.doi.org/10.5851/kosfa.2018.e26 |
_version_ | 1783371300024090624 |
---|---|
author | Utama, Dicky Tri Park, Jongbin Kim, Dong Soo Kim, Eun Bae Lee, Sung Ki |
author_facet | Utama, Dicky Tri Park, Jongbin Kim, Dong Soo Kim, Eun Bae Lee, Sung Ki |
author_sort | Utama, Dicky Tri |
collection | PubMed |
description | Changes in microbial community and physicochemical traits of chicken summer sausage made from spent layer thigh added with different level (0%, 0.1%, 0.3%, and 0.5% w/w) of ground chopi (Zanthoxylum piperitum) during manufacture were analyzed. The microbial community was profiled and analyzed by sequencing 16S rRNA gene using Illumina MiSeq. Samples were taken from raw sausage batter, after 15 h of fermentation, 8 h of cooking including cooling down, and 7 d of drying. The final pH of the sausage was reduced by the addition of ground chopi. However, no clear effect on water activity was observed. Ground chopi inhibited the development of red curing color after fermentation as it exhibited antimicrobial effect. However, the effect on species richness and microbial composition after cooking was unclear. Ground chopi delayed lipid oxidation during manufacture and the effect was dependent on the addition level. Fermentation reduced the species richness with a dominancy of lactic acid bacteria. The profile of microbiota in the raw batter was different from other stages, while the closest relationship was observed after cooking and drying. Proteobacteria was predominant, followed by Firmicutes and Bacteroidetes in raw samples. Firmicutes became dominating after fermentation and so forth, whereas other predominant phylum decreased. At genus level, unclassified Lactobacillales was the most abundant group found after fermentation and so forth. Therefore, the overall microbial composition aspects were mainly controlled during fermentation by the abundance of lactic acid bacteria, while bacterial counts and lipid oxidation were controlled by cooking and the addition of ground chopi. |
format | Online Article Text |
id | pubmed-6238041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Korean Society for Food Science of Animal Resources |
record_format | MEDLINE/PubMed |
spelling | pubmed-62380412018-11-26 Effect of Ground Chopi (Zanthoxylum piperitum) on Physicochemical Traits and Microbial Community of Chicken Summer Sausage during Manufacture Utama, Dicky Tri Park, Jongbin Kim, Dong Soo Kim, Eun Bae Lee, Sung Ki Korean J Food Sci Anim Resour Article Changes in microbial community and physicochemical traits of chicken summer sausage made from spent layer thigh added with different level (0%, 0.1%, 0.3%, and 0.5% w/w) of ground chopi (Zanthoxylum piperitum) during manufacture were analyzed. The microbial community was profiled and analyzed by sequencing 16S rRNA gene using Illumina MiSeq. Samples were taken from raw sausage batter, after 15 h of fermentation, 8 h of cooking including cooling down, and 7 d of drying. The final pH of the sausage was reduced by the addition of ground chopi. However, no clear effect on water activity was observed. Ground chopi inhibited the development of red curing color after fermentation as it exhibited antimicrobial effect. However, the effect on species richness and microbial composition after cooking was unclear. Ground chopi delayed lipid oxidation during manufacture and the effect was dependent on the addition level. Fermentation reduced the species richness with a dominancy of lactic acid bacteria. The profile of microbiota in the raw batter was different from other stages, while the closest relationship was observed after cooking and drying. Proteobacteria was predominant, followed by Firmicutes and Bacteroidetes in raw samples. Firmicutes became dominating after fermentation and so forth, whereas other predominant phylum decreased. At genus level, unclassified Lactobacillales was the most abundant group found after fermentation and so forth. Therefore, the overall microbial composition aspects were mainly controlled during fermentation by the abundance of lactic acid bacteria, while bacterial counts and lipid oxidation were controlled by cooking and the addition of ground chopi. Korean Society for Food Science of Animal Resources 2018-10 2018-10-31 /pmc/articles/PMC6238041/ /pubmed/30479501 http://dx.doi.org/10.5851/kosfa.2018.e26 Text en © Copyright 2018 Korean Society for Food Science of Animal Resources http://creativecommons.org/licenses/by-nc/3.0/ This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Article Utama, Dicky Tri Park, Jongbin Kim, Dong Soo Kim, Eun Bae Lee, Sung Ki Effect of Ground Chopi (Zanthoxylum piperitum) on Physicochemical Traits and Microbial Community of Chicken Summer Sausage during Manufacture |
title | Effect of Ground Chopi (Zanthoxylum piperitum) on
Physicochemical Traits and Microbial Community of Chicken Summer Sausage during
Manufacture |
title_full | Effect of Ground Chopi (Zanthoxylum piperitum) on
Physicochemical Traits and Microbial Community of Chicken Summer Sausage during
Manufacture |
title_fullStr | Effect of Ground Chopi (Zanthoxylum piperitum) on
Physicochemical Traits and Microbial Community of Chicken Summer Sausage during
Manufacture |
title_full_unstemmed | Effect of Ground Chopi (Zanthoxylum piperitum) on
Physicochemical Traits and Microbial Community of Chicken Summer Sausage during
Manufacture |
title_short | Effect of Ground Chopi (Zanthoxylum piperitum) on
Physicochemical Traits and Microbial Community of Chicken Summer Sausage during
Manufacture |
title_sort | effect of ground chopi (zanthoxylum piperitum) on
physicochemical traits and microbial community of chicken summer sausage during
manufacture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238041/ https://www.ncbi.nlm.nih.gov/pubmed/30479501 http://dx.doi.org/10.5851/kosfa.2018.e26 |
work_keys_str_mv | AT utamadickytri effectofgroundchopizanthoxylumpiperitumonphysicochemicaltraitsandmicrobialcommunityofchickensummersausageduringmanufacture AT parkjongbin effectofgroundchopizanthoxylumpiperitumonphysicochemicaltraitsandmicrobialcommunityofchickensummersausageduringmanufacture AT kimdongsoo effectofgroundchopizanthoxylumpiperitumonphysicochemicaltraitsandmicrobialcommunityofchickensummersausageduringmanufacture AT kimeunbae effectofgroundchopizanthoxylumpiperitumonphysicochemicaltraitsandmicrobialcommunityofchickensummersausageduringmanufacture AT leesungki effectofgroundchopizanthoxylumpiperitumonphysicochemicaltraitsandmicrobialcommunityofchickensummersausageduringmanufacture |