Cargando…
Machine Learning With K-Means Dimensional Reduction for Predicting Survival Outcomes in Patients With Breast Cancer
OBJECTIVE: Despite existing prognostic markers, breast cancer prognosis remains a difficult subject due to the complex relationships between many contributing factors and survival. This study seeks to integrate multiple clinicopathological and genomic factors with dimensional reduction across machin...
Autores principales: | Zhao, Melissa, Tang, Yushi, Kim, Hyunkyung, Hasegawa, Kohei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238199/ https://www.ncbi.nlm.nih.gov/pubmed/30455569 http://dx.doi.org/10.1177/1176935118810215 |
Ejemplares similares
-
Weighted K-means support vector machine for cancer prediction
por: Kim, SungHwan
Publicado: (2016) -
On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance
por: Wan, Zhi, et al.
Publicado: (2021) -
A comparison of machine learning techniques for survival prediction in breast cancer
por: Vanneschi, Leonardo, et al.
Publicado: (2011) -
Machine Learning Algorithms for Prediction of Survival Curves in Breast Cancer Patients
por: Maabreh, Roqia Saleem Awad, et al.
Publicado: (2021) -
Machine Learning–Based Prediction of Clinical Outcomes for Children During Emergency Department Triage
por: Goto, Tadahiro, et al.
Publicado: (2019)