Cargando…
First in vivo evaluation of a potential SPECT brain radiotracer for the gonadotropin releasing hormone receptor
OBJECTIVES: In vivo evaluations of a gonadotropin releasing hormone-receptor single photon emission computed tomography radiotracer for non-invasive detection of gonadotropin releasing homone-receptors in brain. RESULTS: We have used a simple, robust and high-yielding procedure to radiolabel an alph...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238273/ https://www.ncbi.nlm.nih.gov/pubmed/30442192 http://dx.doi.org/10.1186/s13104-018-3924-2 |
Sumario: | OBJECTIVES: In vivo evaluations of a gonadotropin releasing hormone-receptor single photon emission computed tomography radiotracer for non-invasive detection of gonadotropin releasing homone-receptors in brain. RESULTS: We have used a simple, robust and high-yielding procedure to radiolabel an alpha-halogenated bioactive compound with high radiochemical yield. Literature findings showed similar alpha-halogenated compounds suitable for in vivo evaluations. The compound was found to possess nano molar affinity for the gonadotropin releasing hormone-receptor in a competition dependent inhibition study. Furthermore, liquid chromatography-mass spectrometry analysis in saline, human and rat serum resulted in 46%, 52% and 44% stability after incubation for 1 h respectively. In addition, rat brain single photon emission computed tomography and biodistribution studies gave further insight into the nature of the compound as a radiotracer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13104-018-3924-2) contains supplementary material, which is available to authorized users. |
---|