Cargando…

Cerebral and occipito-atlanto-axial involvement in mucopolysaccharidosis patients: clinical, radiological, and neurosurgical features

BACKGROUND: Neurosurgical features of mucopolysaccharidosis (MPS) patients mainly involve the presence of cranio-vertebral junction (CVJ) abnormalities and the development of communicating hydrocephalus. CVJ pathology is a critical aspect that severely influences the morbidity and mortality of MPS p...

Descripción completa

Detalles Bibliográficos
Autores principales: Giussani, Carlo, Guida, Lelio, Canonico, Francesco, Sganzerla, Erik P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238297/
https://www.ncbi.nlm.nih.gov/pubmed/30442179
http://dx.doi.org/10.1186/s13052-018-0558-x
Descripción
Sumario:BACKGROUND: Neurosurgical features of mucopolysaccharidosis (MPS) patients mainly involve the presence of cranio-vertebral junction (CVJ) abnormalities and the development of communicating hydrocephalus. CVJ pathology is a critical aspect that severely influences the morbidity and mortality of MPS patients. Hydrocephalus is slowly progressing; it must be differentiated from cerebral atrophy, and rarely requires treatment. The aim of this paper was to review the literature concerning these conditions, highlighting their clinical, radiological, and surgical aspects to provide a practical point of view for clinicians. RESULTS: CVJ involvement may present with cervical pain, unsteady gait, frequent falls, and progressive impairment of autonomous ambulation, an acute tetraplegia even after minor trauma. Magnetic resonance imaging (MRI) of the cervical spine, including active dynamic flexion and extension scans, is the most powerful imaging technique for detecting spinal cord compression at the CVJ in MPS patients. The main radiological features include atlanto-axial subluxation, odontoid hypoplasia, periodontoid soft tissue masses, spinal canal narrowing, and spinal cord compression. Together with MRI, fine-cut computed tomography (CT) scans with coronal and sagittal three-dimensional reconstructions are important diagnostic tools in the preoperative workup thanks to the information gleaned about bone structure conformation and angles. Finally, angio-CT slices are equally useful in preoperative planning, defining vertebral artery position in relation to bony structures. Surgery of the CVJ is proposed both to treat cord compression with MRI signs of myelopathy or as a preventive treatment in patients at high risk of cord damage. Among different surgical options, we always suggest performing decompression and instrumented stabilization. Hydrocephalus may occasionally present clinically with intracranial hypertension symptoms such as headache, vomiting, and high sight impairment. Neurocognitive symptoms may be hidden by the constitutive cognitive impairment. MRI with a study of dynamic cerebrospinal fluid (CSF) flow is helpful to differentiate from ventriculomegaly, which does not require treatment. Ventriculo-peritoneal shunt placement is the gold standard to treat hydrocephalus, although endoscopic third ventriculostomy has recently shown good results in some patients. CONCLUSION: Early recognition of CVJ pathology and hydrocephalus is critical to avoid the development of severe complications. A multidisciplinary approach involving physicians, neuroradiologists, and neurosurgeons is needed to detect such conditions and to select patients eligible for surgery.