Cargando…
B-cell epitopes of African horse sickness virus serotype 4 recognised by immune horse sera
Identifying antigenic proteins and mapping their epitopes is important for the development of diagnostic reagents and recombinant vaccines. B-cell epitopes of African horse sickness virus (AHSV) have previously been mapped on VP2, VP5, VP7 and NS1, using mouse, rabbit and chicken monoclonal antibodi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AOSIS
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238682/ https://www.ncbi.nlm.nih.gov/pubmed/28281773 http://dx.doi.org/10.4102/ojvr.v84i1.1313 |
Sumario: | Identifying antigenic proteins and mapping their epitopes is important for the development of diagnostic reagents and recombinant vaccines. B-cell epitopes of African horse sickness virus (AHSV) have previously been mapped on VP2, VP5, VP7 and NS1, using mouse, rabbit and chicken monoclonal antibodies. A comprehensive study of the humoral immune response of five vaccinated horses to AHSV-4 antigenic peptides was undertaken. A fragmented-genome phage display library expressing a repertoire of AHSV-4 peptides spanning the entire genome was constructed. The library was affinity selected for binders on immobilised polyclonal immunoglobulin G (IgG) isolated from horse sera collected pre- and post-immunisation with an attenuated AHSV-4 monovalent vaccine. The DNA inserts of binding phages were sequenced with Illumina high-throughput sequencing. The data were normalised using pre-immune IgG-selected sequences. More sequences mapped to the genes coding for NS3, VP6 and VP5 than to the other genes. However, VP2 and VP5 each had more antigenic regions than each of the other proteins. This study identified a number of epitopes to which the horse’s humoral immune system responds during immunisation with AHSV-4. |
---|