Cargando…

Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro

INTRODUCTION: For immune cells transforming growth factor beta-1 (TGF-β1) can enhance or repress effector functions. Here, we characterize the effects of TGF-β1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyons, David O., Plewes, Michele R., Pullen, Nicholas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239331/
https://www.ncbi.nlm.nih.gov/pubmed/30444930
http://dx.doi.org/10.1371/journal.pone.0207704
_version_ 1783371541712470016
author Lyons, David O.
Plewes, Michele R.
Pullen, Nicholas A.
author_facet Lyons, David O.
Plewes, Michele R.
Pullen, Nicholas A.
author_sort Lyons, David O.
collection PubMed
description INTRODUCTION: For immune cells transforming growth factor beta-1 (TGF-β1) can enhance or repress effector functions. Here, we characterize the effects of TGF-β1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast cells; BMMC). We also investigated potential interactions between TGF-β1 and stem cell factor (SCF). We conclude TGF-β1 plays a selectively stimulatory role for mast cell cultures in vitro. METHODS: BMMCs from C57BL/6 mice were differentiated with IL-3 and then treated with TGF-β1. BMMCs were exposed to TGF-β1, primed with IgE, activated with antigen, and then IL-6 and IL-13 cytokine release was quantified using ELISA. Additionally, the effects of TGF-β1 on both IgE and IL-33-mediated short term activation were observed via flow cytometric analysis of both surface LAMP-1 expression and intracellular IL-6. Receptor colocalization was visualized using fluorescence confocal microscopy and individual receptor expression levels were also quantified. RESULTS: Resting IL-6 production increased with TGF-β1 but significance was lost following BMMC activation via IgE receptor (FcεRI) crosslinking. This was similar to a comparison effect due to SCF treatment alone, which also enhanced resting levels of IL-6. TGF-β1 treatment enhanced release of IL-13 only with FcεRI-IgE-mediated activation. TGF-β1 suppressed mobilization of IL-6 with short-term BMMC activation when stimulated with IL-33. Lastly, colocalization patterns of the SCF receptor (CD117) and FcεRI with IgE crosslinking were unaffected by TGF-β1 treatment, but individual expression levels for FcεRI, CD117, and TGFβRII were all reduced following either IgE activation or TGF-β1 treatment; this reduction was partially recovered in BMMCs that were both activated by IgE and treated with TGF-β1. DISCUSSION: These data reveal a novel positive effect of soluble TGF-β1 on mast cell activation in vitro, suggesting mast cells may be activated through a non-canonical pathway by TGF-β1. Understanding this interaction will provide insight into the potential role of mast cells in settings where TGF-β1 is produced in an aberrant manner, such as in and around high grade tumors.
format Online
Article
Text
id pubmed-6239331
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62393312018-12-01 Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro Lyons, David O. Plewes, Michele R. Pullen, Nicholas A. PLoS One Research Article INTRODUCTION: For immune cells transforming growth factor beta-1 (TGF-β1) can enhance or repress effector functions. Here, we characterize the effects of TGF-β1 on IgE-mediated and IL-33-mediated activation of primary murine mast cells derived from hematopoietic stem cells (bone marrow derived mast cells; BMMC). We also investigated potential interactions between TGF-β1 and stem cell factor (SCF). We conclude TGF-β1 plays a selectively stimulatory role for mast cell cultures in vitro. METHODS: BMMCs from C57BL/6 mice were differentiated with IL-3 and then treated with TGF-β1. BMMCs were exposed to TGF-β1, primed with IgE, activated with antigen, and then IL-6 and IL-13 cytokine release was quantified using ELISA. Additionally, the effects of TGF-β1 on both IgE and IL-33-mediated short term activation were observed via flow cytometric analysis of both surface LAMP-1 expression and intracellular IL-6. Receptor colocalization was visualized using fluorescence confocal microscopy and individual receptor expression levels were also quantified. RESULTS: Resting IL-6 production increased with TGF-β1 but significance was lost following BMMC activation via IgE receptor (FcεRI) crosslinking. This was similar to a comparison effect due to SCF treatment alone, which also enhanced resting levels of IL-6. TGF-β1 treatment enhanced release of IL-13 only with FcεRI-IgE-mediated activation. TGF-β1 suppressed mobilization of IL-6 with short-term BMMC activation when stimulated with IL-33. Lastly, colocalization patterns of the SCF receptor (CD117) and FcεRI with IgE crosslinking were unaffected by TGF-β1 treatment, but individual expression levels for FcεRI, CD117, and TGFβRII were all reduced following either IgE activation or TGF-β1 treatment; this reduction was partially recovered in BMMCs that were both activated by IgE and treated with TGF-β1. DISCUSSION: These data reveal a novel positive effect of soluble TGF-β1 on mast cell activation in vitro, suggesting mast cells may be activated through a non-canonical pathway by TGF-β1. Understanding this interaction will provide insight into the potential role of mast cells in settings where TGF-β1 is produced in an aberrant manner, such as in and around high grade tumors. Public Library of Science 2018-11-16 /pmc/articles/PMC6239331/ /pubmed/30444930 http://dx.doi.org/10.1371/journal.pone.0207704 Text en © 2018 Lyons et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lyons, David O.
Plewes, Michele R.
Pullen, Nicholas A.
Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title_full Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title_fullStr Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title_full_unstemmed Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title_short Soluble transforming growth factor beta-1 enhances murine mast cell release of Interleukin 6 in IgE-independent and Interleukin 13 in IgE-dependent settings in vitro
title_sort soluble transforming growth factor beta-1 enhances murine mast cell release of interleukin 6 in ige-independent and interleukin 13 in ige-dependent settings in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6239331/
https://www.ncbi.nlm.nih.gov/pubmed/30444930
http://dx.doi.org/10.1371/journal.pone.0207704
work_keys_str_mv AT lyonsdavido solubletransforminggrowthfactorbeta1enhancesmurinemastcellreleaseofinterleukin6inigeindependentandinterleukin13inigedependentsettingsinvitro
AT plewesmicheler solubletransforminggrowthfactorbeta1enhancesmurinemastcellreleaseofinterleukin6inigeindependentandinterleukin13inigedependentsettingsinvitro
AT pullennicholasa solubletransforminggrowthfactorbeta1enhancesmurinemastcellreleaseofinterleukin6inigeindependentandinterleukin13inigedependentsettingsinvitro