Cargando…
Controlled electron injection facilitated by nanoparticles for laser wakefield acceleration
We propose a novel injection scheme for laser-driven wakefield acceleration in which controllable localized electron injection is obtained by inserting nanoparticles into a plasma medium. The nanoparticles provide a very confined electric field that triggers localized electron injection where nonlin...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240057/ https://www.ncbi.nlm.nih.gov/pubmed/30446700 http://dx.doi.org/10.1038/s41598-018-34998-0 |
Sumario: | We propose a novel injection scheme for laser-driven wakefield acceleration in which controllable localized electron injection is obtained by inserting nanoparticles into a plasma medium. The nanoparticles provide a very confined electric field that triggers localized electron injection where nonlinear plasma waves are excited but not sufficient for background electrons self-injection. We present a theoretical model to describe the conditions and properties of the electron injection in the presence of nanoparticles. Multi-dimensional particle-in-cell (PIC) simulations demonstrate that the total charge of the injected electron beam can be controlled by the position, number, size, and density of the nanoparticles. The PIC simulation also indicates that a 5-GeV electron beam with an energy spread below 1% can be obtained with a 0.5-PW laser pulse by using the nanoparticle-assisted laser wakefield acceleration. |
---|