Cargando…

Construction and characterization of a Saccharomyces cerevisiae strain able to grow on glucosamine as sole carbon and nitrogen source

Saccharomyces cerevisiae can transport and phosphorylate glucosamine, but cannot grow on this amino sugar. While an enzyme catalyzing the reaction from glucosamine-6-phosphate to fructose-6-phosphate, necessary for glucosamine catabolism, is present in yeasts using N-acetylglucosamine as carbon sour...

Descripción completa

Detalles Bibliográficos
Autores principales: Flores, Carmen-Lisset, Gancedo, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240059/
https://www.ncbi.nlm.nih.gov/pubmed/30446667
http://dx.doi.org/10.1038/s41598-018-35045-8
Descripción
Sumario:Saccharomyces cerevisiae can transport and phosphorylate glucosamine, but cannot grow on this amino sugar. While an enzyme catalyzing the reaction from glucosamine-6-phosphate to fructose-6-phosphate, necessary for glucosamine catabolism, is present in yeasts using N-acetylglucosamine as carbon source, a sequence homology search suggested that such an enzyme is absent from Saccharomyces cerevisiae. The gene YlNAG1 encoding glucosamine-6-phosphate deaminase from Yarrowia lipolytica was introduced into S. cerevisiae and growth in glucosamine tested. The constructed strain grew in glucosamine as only carbon and nitrogen source. Growth on the amino sugar required respiration and caused an important ammonium excretion. Strains overexpressing YlNAG1 and one of the S. cerevisiae glucose transporters HXT1, 2, 3, 4, 6 or 7 grew in glucosamine. The amino sugar caused catabolite repression of different enzymes to a lower extent than that produced by glucose. The availability of a strain of S. cerevisiae able to grow on glucosamine opens new possibilities to investigate or manipulate pathways related with glucosamine metabolism in a well-studied organism.