Cargando…

Cellular metabolism constrains innate immune responses in early human ontogeny

Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation displa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kan, Bernard, Michalski, Christina, Fu, Helen, Au, Hilda H. T., Lee, Kelsey, Marchant, Elizabeth A., Cheng, Maye F., Anderson-Baucum, Emily, Aharoni-Simon, Michal, Tilley, Peter, Mirmira, Raghavendra G., Ross, Colin J., Luciani, Dan S., Jan, Eric, Lavoie, Pascal M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240060/
https://www.ncbi.nlm.nih.gov/pubmed/30446641
http://dx.doi.org/10.1038/s41467-018-07215-9
_version_ 1783371563416944640
author Kan, Bernard
Michalski, Christina
Fu, Helen
Au, Hilda H. T.
Lee, Kelsey
Marchant, Elizabeth A.
Cheng, Maye F.
Anderson-Baucum, Emily
Aharoni-Simon, Michal
Tilley, Peter
Mirmira, Raghavendra G.
Ross, Colin J.
Luciani, Dan S.
Jan, Eric
Lavoie, Pascal M.
author_facet Kan, Bernard
Michalski, Christina
Fu, Helen
Au, Hilda H. T.
Lee, Kelsey
Marchant, Elizabeth A.
Cheng, Maye F.
Anderson-Baucum, Emily
Aharoni-Simon, Michal
Tilley, Peter
Mirmira, Raghavendra G.
Ross, Colin J.
Luciani, Dan S.
Jan, Eric
Lavoie, Pascal M.
author_sort Kan, Bernard
collection PubMed
description Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny.
format Online
Article
Text
id pubmed-6240060
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-62400602018-11-19 Cellular metabolism constrains innate immune responses in early human ontogeny Kan, Bernard Michalski, Christina Fu, Helen Au, Hilda H. T. Lee, Kelsey Marchant, Elizabeth A. Cheng, Maye F. Anderson-Baucum, Emily Aharoni-Simon, Michal Tilley, Peter Mirmira, Raghavendra G. Ross, Colin J. Luciani, Dan S. Jan, Eric Lavoie, Pascal M. Nat Commun Article Pathogen immune responses are profoundly attenuated in fetuses and premature infants, yet the mechanisms underlying this developmental immaturity remain unclear. Here we show transcriptomic, metabolic and polysome profiling and find that monocytes isolated from infants born early in gestation display perturbations in PPAR-γ-regulated metabolic pathways, limited glycolytic capacity and reduced ribosomal activity. These metabolic changes are linked to a lack of translation of most cytokines and of MALT1 signalosome genes essential to respond to the neonatal pathogen Candida. In contrast, they have little impact on house-keeping phagocytosis functions. Transcriptome analyses further indicate a role for mTOR and its putative negative regulator DNA Damage Inducible Transcript 4-Like in regulating these metabolic constraints. Our results provide a molecular basis for the broad susceptibility to multiple pathogens in these infants, and suggest that the fetal immune system is metabolically programmed to avoid energetically costly, dispensable and potentially harmful immune responses during ontogeny. Nature Publishing Group UK 2018-11-16 /pmc/articles/PMC6240060/ /pubmed/30446641 http://dx.doi.org/10.1038/s41467-018-07215-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kan, Bernard
Michalski, Christina
Fu, Helen
Au, Hilda H. T.
Lee, Kelsey
Marchant, Elizabeth A.
Cheng, Maye F.
Anderson-Baucum, Emily
Aharoni-Simon, Michal
Tilley, Peter
Mirmira, Raghavendra G.
Ross, Colin J.
Luciani, Dan S.
Jan, Eric
Lavoie, Pascal M.
Cellular metabolism constrains innate immune responses in early human ontogeny
title Cellular metabolism constrains innate immune responses in early human ontogeny
title_full Cellular metabolism constrains innate immune responses in early human ontogeny
title_fullStr Cellular metabolism constrains innate immune responses in early human ontogeny
title_full_unstemmed Cellular metabolism constrains innate immune responses in early human ontogeny
title_short Cellular metabolism constrains innate immune responses in early human ontogeny
title_sort cellular metabolism constrains innate immune responses in early human ontogeny
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240060/
https://www.ncbi.nlm.nih.gov/pubmed/30446641
http://dx.doi.org/10.1038/s41467-018-07215-9
work_keys_str_mv AT kanbernard cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT michalskichristina cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT fuhelen cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT auhildaht cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT leekelsey cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT marchantelizabetha cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT chengmayef cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT andersonbaucumemily cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT aharonisimonmichal cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT tilleypeter cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT mirmiraraghavendrag cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT rosscolinj cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT lucianidans cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT janeric cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny
AT lavoiepascalm cellularmetabolismconstrainsinnateimmuneresponsesinearlyhumanontogeny