Cargando…
Fibroblast growth factor-1 as a mediator of paracrine effects of canine adipose tissue-derived mesenchymal stem cells on in vitro-induced insulin resistance models
BACKGROUND: In the field of diabetes research, many studies on cell therapy have been conducted using mesenchymal stem cells. This research was intended to shed light on the influence of canine adipose-tissue-derived mesenchymal stem cell conditioned medium (cAT-MSC CM) on in vitro insulin resistanc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240186/ https://www.ncbi.nlm.nih.gov/pubmed/30445954 http://dx.doi.org/10.1186/s12917-018-1671-1 |
Sumario: | BACKGROUND: In the field of diabetes research, many studies on cell therapy have been conducted using mesenchymal stem cells. This research was intended to shed light on the influence of canine adipose-tissue-derived mesenchymal stem cell conditioned medium (cAT-MSC CM) on in vitro insulin resistance models that were induced in differentiated 3T3-L1 adipocytes and the possible mechanisms involved in the phenomenon. RESULTS: Gene expression levels of insulin receptor substrate-1 (IRS-1) and glucose transporter type 4 (GLUT4) were used as indicators of insulin resistance. Relative protein expression levels of IRS-1 and GLUT4 were augmented in the cAT-MSC CM treatment group compared to insulin resistance models, indicating beneficial effects of cAT-MSC to DM, probably by actions of secreting factors. With reference to previous studies on fibroblast growth factor-1 (FGF1), we proposed FGF1 as a key contributing factor to the mechanism of action. We added anti-FGF1 neutralizing antibody to the CM-treated insulin resistance models. As a result, significantly diminished protein levels of IRS-1 and GLUT4 were observed, supporting our assumption. Similar results were observed in glucose uptake assay. CONCLUSIONS: Accordingly, this study advocated the potential of FGF-1 from cAT-MSC CM as an alternative insulin sensitizer and discovered a signalling factor associated with the paracrine effects of cAT-MSC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12917-018-1671-1) contains supplementary material, which is available to authorized users. |
---|