Cargando…
Joint modeling of multivariate longitudinal data and survival data in several observational studies of Huntington’s disease
BACKGROUND: Joint modeling is appropriate when one wants to predict the time to an event with covariates that are measured longitudinally and are related to the event. An underlying random effects structure links the survival and longitudinal submodels and allows for individual-specific predictions....
Autores principales: | Long, Jeffrey D., Mills, James A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240282/ https://www.ncbi.nlm.nih.gov/pubmed/30445915 http://dx.doi.org/10.1186/s12874-018-0592-9 |
Ejemplares similares
-
Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study
por: Huang, Yangxin, et al.
Publicado: (2022) -
Stability of exploratory multivariate data modeling in longitudinal data
por: Sengul, Haydar, et al.
Publicado: (2003) -
Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data
por: Deslandes, Emmanuelle, et al.
Publicado: (2010) -
Testing a longitudinal compensation model in premanifest Huntington’s disease
por: Gregory, Sarah, et al.
Publicado: (2018) -
Analysis of multivariate longitudinal immuno-epidemiological data using a pairwise joint modelling approach
por: Lubyayi, Lawrence, et al.
Publicado: (2021)