Cargando…

Comparative genomics of nuclear envelope proteins

BACKGROUND: The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair...

Descripción completa

Detalles Bibliográficos
Autores principales: Garapati, Hita Sony, Mishra, Krishnaveni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240307/
https://www.ncbi.nlm.nih.gov/pubmed/30445911
http://dx.doi.org/10.1186/s12864-018-5218-4
Descripción
Sumario:BACKGROUND: The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS: In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS: Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5218-4) contains supplementary material, which is available to authorized users.