Cargando…
German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells
PURPOSE: Cockroach exposure is a pivotal cause of asthma. Tight junctions are intercellular structures required for maintenance of the barrier function of the airway epithelium, which is impaired in this disease. Matrix metalloproteinases (MMPs) digest extracellular matrix components and are involve...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240571/ https://www.ncbi.nlm.nih.gov/pubmed/30450857 http://dx.doi.org/10.3349/ymj.2018.59.10.1222 |
_version_ | 1783371643982184448 |
---|---|
author | Lee, Kyung Eun Jee, Hye Mi Hong, Jung Yeon Kim, Mi Na Oh, Mi Seon Kim, Yun Seon Kim, Kyung Won Kim, Kyu Earn Sohn, Myung Hyun |
author_facet | Lee, Kyung Eun Jee, Hye Mi Hong, Jung Yeon Kim, Mi Na Oh, Mi Seon Kim, Yun Seon Kim, Kyung Won Kim, Kyu Earn Sohn, Myung Hyun |
author_sort | Lee, Kyung Eun |
collection | PubMed |
description | PURPOSE: Cockroach exposure is a pivotal cause of asthma. Tight junctions are intercellular structures required for maintenance of the barrier function of the airway epithelium, which is impaired in this disease. Matrix metalloproteinases (MMPs) digest extracellular matrix components and are involved in asthma pathogenesis: MMP1 is a collagenase with a direct influence on airway obstruction in asthmatics. This study aimed to investigate the mechanism by which German cockroach extract (GCE) induces MMP1 expression and whether MMP1 release alters cellular tight junctions in human airway epithelial cells (NCI-H292). MATERIALS AND METHODS: mRNA and protein levels were determined using real-time PCR and ELISA. Tight junction proteins were detected using immunofluorescence staining. Epithelial barrier function was measured by transepithelial electrical resistance (TEER). The binding of a transcription factor to DNA molecules was determined by electrophoretic mobility shift assay, while the levels of tight junction proteins and phosphorylation were determined using Western blotting. RESULTS: GCE was shown to increase MMP1 expression, TEER, and tight junction degradation. Both an inhibitor and small interfering RNA (siRNA) of MMP1 significantly decreased GCE-induced tight junction disruption. Furthermore, transient transfection with ETS1 and SP1 siRNA, and anti-TLR2 antibody pretreatment prevented MMP1 expression and tight junction degradation. An extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) inhibitor also blocked MMP1 release, ETS1/SP1 DNA binding, and tight junction alteration. CONCLUSION: GCE treatment increases MMP1 expression, leading to tight junction disruption, which is transcriptionally regulated and influenced by the ERK/MAPK pathway in airway epithelial cells. These findings may contribute to developing novel therapeutic strategies for airway diseases. |
format | Online Article Text |
id | pubmed-6240571 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Yonsei University College of Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-62405712018-12-01 German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells Lee, Kyung Eun Jee, Hye Mi Hong, Jung Yeon Kim, Mi Na Oh, Mi Seon Kim, Yun Seon Kim, Kyung Won Kim, Kyu Earn Sohn, Myung Hyun Yonsei Med J Original Article PURPOSE: Cockroach exposure is a pivotal cause of asthma. Tight junctions are intercellular structures required for maintenance of the barrier function of the airway epithelium, which is impaired in this disease. Matrix metalloproteinases (MMPs) digest extracellular matrix components and are involved in asthma pathogenesis: MMP1 is a collagenase with a direct influence on airway obstruction in asthmatics. This study aimed to investigate the mechanism by which German cockroach extract (GCE) induces MMP1 expression and whether MMP1 release alters cellular tight junctions in human airway epithelial cells (NCI-H292). MATERIALS AND METHODS: mRNA and protein levels were determined using real-time PCR and ELISA. Tight junction proteins were detected using immunofluorescence staining. Epithelial barrier function was measured by transepithelial electrical resistance (TEER). The binding of a transcription factor to DNA molecules was determined by electrophoretic mobility shift assay, while the levels of tight junction proteins and phosphorylation were determined using Western blotting. RESULTS: GCE was shown to increase MMP1 expression, TEER, and tight junction degradation. Both an inhibitor and small interfering RNA (siRNA) of MMP1 significantly decreased GCE-induced tight junction disruption. Furthermore, transient transfection with ETS1 and SP1 siRNA, and anti-TLR2 antibody pretreatment prevented MMP1 expression and tight junction degradation. An extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) inhibitor also blocked MMP1 release, ETS1/SP1 DNA binding, and tight junction alteration. CONCLUSION: GCE treatment increases MMP1 expression, leading to tight junction disruption, which is transcriptionally regulated and influenced by the ERK/MAPK pathway in airway epithelial cells. These findings may contribute to developing novel therapeutic strategies for airway diseases. Yonsei University College of Medicine 2018-12-01 2018-11-15 /pmc/articles/PMC6240571/ /pubmed/30450857 http://dx.doi.org/10.3349/ymj.2018.59.10.1222 Text en © Copyright: Yonsei University College of Medicine 2018 https://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Lee, Kyung Eun Jee, Hye Mi Hong, Jung Yeon Kim, Mi Na Oh, Mi Seon Kim, Yun Seon Kim, Kyung Won Kim, Kyu Earn Sohn, Myung Hyun German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title | German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title_full | German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title_fullStr | German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title_full_unstemmed | German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title_short | German Cockroach Extract Induces Matrix Metalloproteinase-1 Expression, Leading to Tight Junction Disruption in Human Airway Epithelial Cells |
title_sort | german cockroach extract induces matrix metalloproteinase-1 expression, leading to tight junction disruption in human airway epithelial cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240571/ https://www.ncbi.nlm.nih.gov/pubmed/30450857 http://dx.doi.org/10.3349/ymj.2018.59.10.1222 |
work_keys_str_mv | AT leekyungeun germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT jeehyemi germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT hongjungyeon germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT kimmina germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT ohmiseon germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT kimyunseon germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT kimkyungwon germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT kimkyuearn germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells AT sohnmyunghyun germancockroachextractinducesmatrixmetalloproteinase1expressionleadingtotightjunctiondisruptioninhumanairwayepithelialcells |