Cargando…

Abnormally expressed miR-23b in Chinese Mongolian at high cardiovascular risk may contribute to monocyte/macrophage inflammatory reaction in atherosclerosis

Background: The prevalence of coronary heart disease (CHD) appears to be high among Chinese Mongolians. MiR-23b has been proven to play a key role in atherosclerosis. The expression and role of miR-23b in the Mongolians at high cardiovascular risk were explored in the present study. Methods: Forty c...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Li-ping, Zhao, Xing-sheng, He, Le-ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240720/
https://www.ncbi.nlm.nih.gov/pubmed/30314997
http://dx.doi.org/10.1042/BSR20180673
Descripción
Sumario:Background: The prevalence of coronary heart disease (CHD) appears to be high among Chinese Mongolians. MiR-23b has been proven to play a key role in atherosclerosis. The expression and role of miR-23b in the Mongolians at high cardiovascular risk were explored in the present study. Methods: Forty cases of blood samples from the Mongolians at high cardiovascular risk were enrolled in the present study. The expression of miR-23b was quantified by quantitative real-time PCR. To induce monocytes differentiation into macrophages, HP-1 cells were cultured with phorbol 12-myristate 13-acetate. The level of inflammatory markers was determined by the enzyme-linked immunosorbent assay. The interaction between miR-23b and A20 was explored by the dual luciferase reporter assay. Results: The expression of miR-23b in the Mongolian at high cardiovascular risk was higher than that in healthy Mongolian volunteers. Decrease in ATP-binding cassette transporter A1 caused by miR-23b is responsible for TC accumulation in the Mongolian at high cardiovascular risk. MiR-23b enhanced the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response of THP-1 derived macrophage. MiR-23b regulated nuclear factor-κB (NF-κB) pathway through targeting A20. MiR-23b mediated oxLDL-induced inflammatory response of peripheral blood mononuclear cell in the Mongolian at high cardiovascular risk. Conclusion MiR-23b enhanced oxLDL-induced inflammatory response of macrophages in the Mongolian at high cardiovascular risk through the A20/NF-κB signaling pathway, and thus contributing to atherosclerosis.