Cargando…
Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals
Various chemical shift predictive methodologies have been studied and developed, but there remains the problem of prediction accuracy. Assigning the NMR signals of metabolic mixtures requires high predictive performance owing to the complexity of the signals. Here we propose a new predictive tool th...
Autores principales: | Ito, Kengo, Obuchi, Yuka, Chikayama, Eisuke, Date, Yasuhiro, Kikuchi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240814/ https://www.ncbi.nlm.nih.gov/pubmed/30542569 http://dx.doi.org/10.1039/c8sc03628d |
Ejemplares similares
-
Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties
por: Wei, Feifei, et al.
Publicado: (2021) -
InterSpin: Integrated Supportive Webtools for Low-
and High-Field NMR Analyses Toward Molecular Complexity
por: Yamada, Shunji, et al.
Publicado: (2019) -
Correction: Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
por: Chikayama, Eisuke, et al.
Publicado: (2009) -
Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
por: Chikayama, Eisuke, et al.
Publicado: (2008) -
Correction: Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways
por: Chikayama, Eisuke, et al.
Publicado: (2009)