Cargando…

Biphasic dendritic growth of dorsolateral prefrontal cortex associative neurons and early cognitive development

AIM: To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Sedmak, Dora, Hrvoj-Mihić, Branka, Džaja, Domagoj, Habek, Nikola, Uylings, Harry B. M., Petanjek, Zdravko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Croatian Medical Schools 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240825/
https://www.ncbi.nlm.nih.gov/pubmed/30394011
http://dx.doi.org/10.3325/cmj.2018.59.189
Descripción
Sumario:AIM: To analyze postnatal development and life-span changes of apical dendrite side branches (oblique dendrites) from associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex and to compare the findings with the previously established pattern of basal dendrite development. METHODS: We analyzed dendritic morphology from 352 rapid-Golgi impregnated neurons (10-18 neurons per subject) in Brodmann area 9 from the post-mortem tissue of 25 subjects ranging in age from 1 week to 91 years. Data were collected in the period between 1994 and 1996, and the analysis was performed between September 2017 and February 2018. Quantitative dendritic parameters were statistically analyzed using one-way analysis of variance and two-tailed t tests. RESULTS: Oblique dendrites grew rapidly during the first postnatal months, and the increase in the dendrite length was accompanied by the outgrowth of new dendritic segments. After a more than one-year-long “dormant” period of only fine dendritic rearrangements (2.5-16 months), oblique dendrites displayed a second period of marked growth, continuing through the third postnatal year. Basal and oblique dendrites displayed roughly the same growth pattern, but had considerably different topological organization in adulthood. CONCLUSION: Our analysis confirmed that a biphasic pattern of postnatal dendritic development, together with a second growth spurt at the age of 2-3 years, represents a unique feature of the associative layer IIIC magnopyramidal neurons in the human dorsolateral prefrontal cortex. We propose that these structural changes relate to rapid cognitive development during early childhood.